NexxDigital - компьютеры и операционные системы

Сеть связи страны (рис. 2.3) состоит из магистральной (уровень транзитных станций - ТС) и зоновых сетей (уровень местных станций – МС) (рис. 2.4). Зоновая сеть организуется в пределах одной-двух областей (или республик, краев). Она подразделяется на внутризоновую и местную (уровень МС). Внутризоновая связь соединяет областной (республиканский, краевой) центр с районами. Местная связь включает сельскую связь (райцентр с колхозами, совхозами и рабочими поселками) и городскую связь. Абоненты зоны охватываются единой семизначной нумерацией, и, следовательно, в зоне может быть до 10 7 телефонов и находятся на уровне доступа.

Магистральная сеть соединяет главный узел (сетевой узел - СУ0) с центрами зон (сетевыми узлами – СУ2, СУ10, СУ12 и т.д.), а также зоны между собой (рис. 2.4). Внутриобластная (внутризоновая) сеть является сетью областного значения.

Эта сеть обеспечивает связью областной центр со своими городами и районными центрами и последние между собой, а также выход их на магистральную сеть (рис. 2.4).

Сеть строится на основе территориально-сетевых (ТСУ) и сетевых (СУ) узлов. Кроме того, сеть связи страны подразделяется на первичную и вторичную.

Рис. 2.3. Структура сети связи страны.

Рис. 2.4. Построение магистральной и зоновой сети.

Первичная сеть - это совокупность всех каналов без подразделения их по назначению и видам связи. В состав ее входят линии и каналообразующая аппаратура. Первичная сеть является единой для всех потребителей каналов и представляет собой базу для вторичных.

Вторичная сеть состоит из каналов одного назначения (телефонных, телеграфных, передачи газет, вещания, видеотелефонных, передачи данных, телевидения и др.), образуемых на базе первичной сети. Вторичная сеть включает коммутационные узлы, оконечные пункты и каналы, выделенные на первичной сети. Вторичные междугородные сети подключаются к первичной сети с помощью соединительных линий между оконечными станциями первичной и вторичных сетей.

2.3. Городские телефонные сети

В общем случае линейные сооружения городской телефонной сети (ГТС) состоят из абонентских (АЛ) и соединительных (СЛ) линий. Для сокращения расходов на строительство линейных сооружений и повышения эффективности их использования в крупных городах (обычно при емкости сети свыше 10 тыс. номеров) строят несколько районных автоматических телефонных станций (РАТС). Такая сеть называется районированной. При этом линии, соединяющие телефонные аппараты с районной телефонной станцией, называются абонентскими, а линии, соединяющие районные станции между собой, - соединительными.

Связь между районными станциями осуществляется одним из следующих способов: по принципу «каждая с каждой», радиальному, с узлами входящего сообщения, с узлами исходящего и входящего сообщений (рис. 2.5). Первый способ обычно применяется на районированных сетях общей емкостью до 80 тыс. номеров. Второй способ используется для связи РАТС с подстанциями или учрежденческими станциями. На крупных сетях образуются узловые телефонные станции с применением третьего или четвертого способа. Кроме того, для выхода на междугородную сеть РАТС связываются с междугородной телефонной станцией непосредственно или через узловые станции.

Построение сетей АЛ осуществляется различными способами, однако все они могут быть сведены к двум основным системам: шкафной и бесшкафной; в Республике Беларусь, как правило, применяется шкафная система.

Рис. 2.5. Построение межстанционных сетей ГТС

Схема устройства линейных сооружений по шкафной системе изображена на рис. 2.6. Здесь показана часть города с распределенными по отдельным кварталам телефонными абонентами. Кроме районной автоматической станции (МС), учережденческих автоматических станций (УАТС1 - УАТС3) и концентраторов (К1 – К5), располагаются места для базовых станций (БС) сотовых систем связи и узлов ввода сигналов кабельного телевидения (КТВ), для которых оператор телефонной сети будет предоставлять информационные транспротные ресурсы. Число пар проводников проложенных кабелей как правило больше числа телефонных абонентов. Это обеспечивает необходимый эксплуатационный запас. Концентраторы К4 и К5 предназначены для обслуживания новых строящихся районов городской застройки. Таким образом сформирована структура транспортной сети абоненского доступа, в которой образованы три кольца.

Включение абонентов в телефонную станцию осуществляется через распределительные коробки (РК) и распределительные шкафы (ШР) (рис. 2.6, б). При этом от телефонной станции в различных направлениях отходят крупные по емкости кабели, которые, разветвляясь на более мелкие, заходят в ШР. Эти кабели вместе с относящимся к ним линейным оборудованием составляют так называемую магистральную сеть. От ШР отходят меньшие по емкости кабели (100-50 пар), которые, разветвляясь, подходят к РК емкостью 10х2. Данные кабели и относящееся к ним линейное оборудование составляют распределительную сеть. От РК к телефонным аппаратам (ТА) абонентов прокладываются однопарные кабели, составляющие абонентскую проводку (рис. 2.6, б).

Рис. 2.6. Построение сети абонентских линий ГТС: а - распределение кабелей по заданиям; б - шкафная система.

Наличие ШР облегчает производство испытания кабелей и дает возможность путем соответствующих переключений в нем соединять любые пары магистрального и распределительного кабелей, что важно при эксплуатации сети, так как на последней обычно имеют место перегруппировки абонентов, появляется необходимость включения новых абонентов, замены цепей в кабелях и т. п.

Кроме того, применение РШ позволяет экономить магистральные кабели. Дело в том, что в РК соответственно их емкости включаются десятипарные распределительные кабели, в то время как число АЛ, включенных в отдельные РК, обычно меньше. Если подвести непосредственно к телефонной станции полную емкость кабелей, включенных в РК, то на значительном расстоянии до телефонной станции образовался бы большой запас кабельных пар, который более или менее продолжительное время оставался бы в значительной мере неиспользованным, что невыгодно. Наличие РШ позволяет иметь эксплуатационный запас кабельных пар магистральной сети значительно меньше запаса в распределительной сети, обеспечивая таким образом экономию емкости магистрального кабеля.

При построении телефонной сети по бесшкафной системе для обеспечения требуемой гибкости сети используется система параллельного включения кабельных жил, сущность которой заключается в том, что одна и та же кабельная пара, идущая от телефонной станции, включается параллельно в несколько РК. Благодаря такому включению достигается уменьшение запасных пар в магистральных кабелях (аналогично распределительным шкафам). Так, например, у кабелей емкостью 20х2 в направлениях А и Б могут идти по семь пар (7х2), причем шесть пар (6х2) могут быть запараллелены и по желанию использованы частично или полностью в направлении А или Б.

При построении телефонных сетей применяется также смешанная система с использованием того или иного способа на тех участках сети, где он является наиболее целесообразным.

Прокладка кабеля в грунт.


DWDM с подключенными клиентами

Привет!
Я планирую магистральные сети «ВымпелКома» - куда идти, что строить и так далее. Сразу предупрежу – города для нас это как «материальные точки», внутри работают другие люди. В них мы заглядываем только для того, чтобы добраться до своих магистральных узлов.

Протяженность магистральной сети - 137 тысяч километров, пропускная способность уже более 8 Тб/с. Сейчас мы уже перешли Урал, находимся в Сибири, переходим Красноярск и планируем добраться до Читы.

Ниже - ещё фото, рассказ про оборудование и действия при обрывах.

Сеть растёт за счёт прокладки магистральных междугородных кабелей непосредственно «ВымпелКомом», покупки уже готовых каналов связи и аренды сетей там, где нет нашего присутствия. За последние годы строительство сети достаточно сильно активизировалось, так как аренда сетей основных магистральных провайдеров стала достаточно дорогой: требования по ширине канала постоянно растут. Ещё несколько лет назад необходимые ресурсы исчислялись сотнями мегабайт, а сейчас на многих участках уже нужны десятки гигабайт. Это в некоторой степени связано с увеличением количества абонентов, но в большей – с ростом популярности интернет-сервисов. В будущем эксперты предсказывают рост трафика и из-за доступности потокового видео, и из-за роста M2M-устройств типа различных датчиков с SIM-картой внутри.

Конечно необходимость любой стройки определяется экономикой, и, чем больше информационные потоки, тем лучше экономика строительства. К примеру, в сторону Урала из Москвы - сечение 440 Гигабит. Для связи междугородных узлов очень редко используем радиорелейное оборудование (оно осталось ещё кое-где на арендованных участках), в труднодоступных местах используем спутниковые каналы (например, на севере). Чаще всего прокладываем обычный кабель. В основном используется кабель с волокнами производства Corning или Fujikura рекомендации G.652, потом к нему подключаем магистральное DWDM оборудование.


Стойки с магистральным оборудованием DWDM


Ещё стойки с магистральным оборудование DWDM

Уплотнённая передача

Если абонент совершает звонок по телефону, то “голос” идет через контроллер (RNC) на коммутатор. Если он выходит во всемирную сеть, то пакетный трафик (дата) через SGSN и GGSN идет в интернет. Магистральная сеть используется для передачи как голоса, так и пакетного трафика между городами России, причем, независимо от расстояния.


DWDM с подключенными высокоскоростными client

Между узловыми точками (крупными маршрутизаторами) мы используем DWDM - спектральное уплотнение канала, мультиплексирование с разделением по длине волны. Работает это так: данные падают в аппаратуру спектрального уплотнения, через неё пробрасываем IP, выделенные каналы и так далее. Нагрузки соединяются в групповой сигнал и одним «чихом» передаются в другой город. Ключевые элементы этой системы – мультиплексор, объединяющий сигналы, и демультиплексор, осуществляющий «распаковку», самые дорогостоящие элементы – транспондеры. К ним непосредственно и подключаются потребители. Основные производители - Ciena и Huawei.


DWDM Ciena - все работает исправно (о чем свидетельствуют синие лампочки)

Раньше мы использовали SDH, сейчас перешли к гибкой и хорошо масштабируемой DWDM. Переход потребовал глубокой модернизации сети с установкой нового оборудования в точках концентрации трафика, а также на всей протяженности линии.


SDH с ограниченными возможностями и DWDM с «безграничными» возможностями

Кольца

Понятно, что обрыв магистральной сеть означает проблемы для тех, кто остался на изолированном участке. Соответственно, многие соединения закольцованы, то есть имеют как минимум по одному резервному каналу.

Правда, пару лет назад случилось практически невероятное – в двух местах кольца почти одномоментно порвали два канала. Теперь мы строим рассечки, чтобы увеличить надёжность и защититься от двойной или тройной аварии на сети.

Магистральные кабели рвут чаще, чем кажется, в основном - в городской черте. Типичные причины – застройка без разрешений, без проверки того, что закопано на участке, внезапный ремонт без согласований. Обычно вы такие аварии даже не замечаете, потому что практически везде - кольца, и для сети в целом это некритично. Мы выезжаем, ремонтируем.

Лет десять назад много обрывов было в сельской местности: деревенские жители с интересом наблюдали за прокладкой кабеля, для того чтобы выкопать, перерубить его лопатой в поисках меди. Сейчас люди уже догадались, что меди внутри оптических кабелей как-то нет. На моей памяти, за последние 10 лет только дважды обрывы кабеля были вызваны действиями охотников за медью. Ещё вспоминается, как магистраль рвало селевым потоком, как её перебивал экскаватор (вообще экскаватор - враг телекоммуникаций №1). Однажды прямо в кабель забили сваю.


Борьба людей и природы (cель)

Обрывы

В случае обрыва кабеля мы фиксируем аварию, сообщаем обслуживающей организации на месте, с которой заключен договор (режим работы 24/7). Есть сложные случаи, особенно они часты зимой, когда на системе управления сложно определить координаты обрыва кабеля. Тогда на месте инженеры берут рефлектометр и начинают искать обрыв. Рефлектометр - это такая штука, которая подаёт оптический импульс, и измеряет время возврата отраженного сигнала от места излома. Прибор, зная скорость сигнала, рассчитывает расстояние до места аварии. «Стрельнули» с одной стороны, потом с другой – стало понятно, где обрыв. Как правило, место видно – например, как я говорил выше, свая торчит или стоит экскаватор со свежей землёй на ковше. Иногда приходится искать подольше, но найти – не проблема. Под землёй оптоволокно само не рвётся, всегда что-то видно на поверхности.

Бригада делает ремонтную вставку - вырезается испорченный кабель, как правило, 20-120 метров. Понятно, что вставка ухудшает соотношение сигнал/шум, но линии строятся с запасом 3 децибелла (этот запас позволит построить около 15 километров вставок). Есть такие места (например на Кавказе), где на линии произошло уже по 20 аварий, резерва хватает. Скорость передачи данных от вставок не падает, ухудшаются характеристики линии. На практике, такого, чтобы из-за вставок пришлось перекладывать кабель, пока не было.


Укладка муфты в кабельную канализацию

Новый участок

Когда нужен новый участок сети, мы готовим бизнес-кейс, считаем затраты. Плюс добавляем данные по тому, что сэкономим при отказе от аренды, коммерческие специалисты прикидывают, сколько будет дополнительных продаж из-за возможности предоставления более широкого спектра услуг. Отдаём план финансистам, они дают заключение, строим или нет. Дальше делается детальное техническое решение, позволяющее нанять подрядчика и построить.


Ввод оптического кабеля в контейнер связи

Сейчас кабель стараемся по возможности закапывать в защитной полиэтиленовой трубе - это самый благоприятный метод. Не везде получается. Где нет возможности, тянем подвесом, используя опоры энергосетей или городских служб… Между городами – оптический кабель может быть размещен в грозотросе ЛЭП, или же используем самонесущий кабель по столбам освещения. Хорошо защищены кабели связи в метро, но там магистрали как таковой нет, обычные – местные сети, а это уже не моя стихия.


Информационные аншлаги через пару лет после прокладки


Спуск кабеля с опоры ЛЭП


НРП


Запас оптического кабеля на опоре


Укладка оптического кабеля (в ЗПТ) в грунт

Средние сроки реализации магистральных междугородных проектов в зависимости от сложности грунтов, характера землевладельцев составляют от года до двух, трех лет. Финалом строительства Мг магистрали являются: проверка участка сертифицированной измерительной аппаратурой, сдача линии в эксплуатацию. Собирается авторитетная комиссия, оформляется куча актов, документов и разрешений. Все это называется красивым словом – легализация. После этого - ура. Линия заработала.

Целесообразно делить территориальные сети, используемые для построения корпоративной сети, на две большие категории:

    магистральные сети;

    сети доступа.

Магистральные территориальные сети (backbone wide-area networks) используются для образования одноранговых связей между крупными локальными сетями, принадлежащими большим подразделениям предприятия. Магистральные территориальные сети должны обеспечивать высокую пропускную способность, так как на магистрали объединяются потоки большого количества подсетей. Кроме того, магистральные сети должны быть постоянно доступны, то есть обеспечивать очень высокий коэффициентом готовности, так как по ним передается трафик многих критически важных для успешной работы предприятия приложений (business-critical applications). Ввиду особой важности магистральных средств им может «прощаться» высокая стоимость. Так как у предприятия обычно имеется не так уж много крупных сетей, то к магистральным сетям не предъявляются требования поддержания разветвленной инфраструктуры доступа.

Обычно в качестве магистральных сетей используются цифровые выделенные каналы со скоростями от 2 до 622 Мбит/с, по которым передается трафик IP, IPX или протоколов архитектуры SNA компании IBM, сети с коммутацией пакетов frame relay, ATM, X.25 или TCP/IP. При наличии выделенных каналов для обеспечения высокой готовности магистрали используется смешанная избыточная топология связей, как это показано на рис. 6.5.

Рис. 6.5. Структура глобальной сети предприятия

Под сетями доступа понимаются территориальные сети, необходимые для связи небольших локальных сетей и отдельных удаленных компьютеров с центральной локальной сетью предприятия. Если организации магистральных связей при создании корпоративной сети всегда уделялось большое внимание, то организация удаленного доступа сотрудников предприятия перешла в разряд стратегически важных вопросов только в последнее время. Быстрый доступ к корпоративной информации из любой географической точки определяет для многих видов деятельности предприятия качество принятия решений его сотрудниками. Важность этого фактора растет с увеличением числа сотрудников, работающих на дому (telecommuters - телекоммьютеров), часто находящихся в командировках, и с ростом количества небольших филиалов предприятий, находящихся в различных городах и, может быть, разных странах.

В качестве отдельных удаленных узлов могут также выступать банкоматы или кассовые аппараты, требующие доступа к центральной базе данных для получения информации о легальных клиентах банка, пластиковые карточки которых необходимо авторизовать на месте. Банкоматы или кассовые аппараты обычно рассчитаны на взаимодействие с центральным компьютером по сети Х.25, которая в свое время специально разрабатывалась как сеть для удаленного доступа неинтеллектуального терминального оборудования к центральному компьютеру.

К сетям доступа предъявляются требования, существенно отличающиеся от требований к магистральным сетям. Так как точек удаленного доступа у предприятия может быть очень много, одним из основных требований является наличие разветвленной инфраструктуры доступа, которая может использоваться сотрудниками предприятия как при работе дома, так и в командировках. Кроме того, стоимость удаленного доступа должна быть умеренной, чтобы экономически оправдать затраты на подключение десятков или сотен удаленных абонентов. При этом требования к пропускной способности у отдельного компьютера или локальной сети, состоящей из двух-трех клиентов, обычно укладываются в диапазон нескольких десятков килобит в секунду (если такая скорость и не вполне удовлетворяет удаленного клиента, то обычно удобствами его работы жертвуют ради экономии средств предприятия).

В качестве сетей доступа обычно применяются телефонные аналоговые сети, сети ISDN и реже - сети frame relay. При подключении локальных сетей филиалов также используются выделенные каналы со скоростями от 19,2 до 64 Кбит/с. Качественный скачок в расширении возможностей удаленного доступа произошел в связи со стремительным ростом популярности и распространенности Internet. Транспортные услуги Internet дешевле, чем услуги междугородных и международных телефонных сетей, а их качество быстро улучшается.

Программные и аппаратные средства, которые обеспечивают подключение компьютеров или локальных сетей удаленных пользователей к корпоративной сети, называются средствами удаленного доступа . Обычно на клиентской стороне эти средства представлены модемом и соответствующим программным обеспечением.

Организацию массового удаленного доступа со стороны центральной локальной сети обеспечивает сервер удаленного доступа (Remote Access Server, RAS) . Сервер удаленного доступа представляет собой программно-аппаратный комплекс, который совмещает функции маршрутизатора, моста и шлюза. Сервер выполняет ту или иную функцию в зависимости от типа протокола, по которому работает удаленный пользователь или удаленная сеть. Серверы удаленного доступа обычно имеют достаточно много низкоскоростных портов для подключения пользователей через аналоговые телефонные сети или ISDN.

Показанная на рис. 6.5. структура глобальной сети, используемой для объединения в корпоративную сеть отдельных локальных сетей и удаленных пользователей, достаточно типична. Она имеет ярко выраженную иерархию территориальных транспортных средств, включающую высокоскоростную магистраль (например, каналы SDH 155-622 Мбит/с), более медленные территориальные сети доступа для подключения локальных сетей средних размеров (например, frame relay) и телефонную сеть общего назначения для удаленного доступа сотрудников.

    Глобальные компьютерные сети (WAN) используются для объединения абонентов разных типов: отдельных компьютеров разных классов - от мэйнфреймов до персональных компьютеров, локальных компьютерных сетей, удаленных терминалов.

    Ввиду большой стоимости инфраструктуры глобальной сети существует острая потребность передачи по одной сети всех типов трафика, которые возникают на предприятии, а не только компьютерного: голосового трафика внутренней телефонной сети, работающей на офисных АТС (РВХ), трафика факс-аппаратов, видеокамер, кассовых аппаратов, банкоматов и другого производственного оборудования.

    Для поддержки мультимедийных видов трафика создаются специальные технологии: ISDN, B-ISDN. Кроме того, технологии глобальных сетей, которые разрабатывались для передачи исключительно компьютерного трафика, в последнее время адаптируются для передачи голоса и изображения. Для этого пакеты, переносящие замеры голоса или данные изображения, приоритезируются, а в тех технологиях, которые это допускают, для их переноса создается соединение с заранее резервируемой пропускной способностью. Имеются специальные устройства доступа - мультиплексоры «голос - данные» или «видео - данные», которые упаковывают мультимедийную информацию в пакеты и отправляют ее по сети, а на приемном конце распаковывают и преобразуют в исходную форму - голос или видеоизображение.

    Глобальные сети предоставляют в основном транспортные услуги, транзитом перенося данные между локальными сетями или компьютерами. Существует нарастающая тенденция поддержки служб прикладного уровня для абонентов глобальной сети: распространение публично-доступной аудио-, видео- и текстовой информации, а также организация интерактивного взаимодействия абонентов сети в реальном масштабе времени. Эти службы появились в Internet и успешно переносятся в корпоративные сети, что называется технологией intranet.

    Все устройства, используемые для подключения абонентов к глобальной сети, делятся на два класса: DTE, собственно вырабатывающие данные, и DCE, служащие для передачи данных в соответствии с требованиями интерфейса глобального канала и завершающие канал.

    Технологии глобальных сетей определяют два типа интерфейса: «пользователь-сеть» (UNI) и «сеть-сеть» (NNI). Интерфейс UNI всегда глубоко детализирован для обеспечения подключения к сети оборудования доступа от разных производителей. Интерфейс NNI может быть детализирован не так подробно, так как взаимодействие крупных сетей может обеспечиваться на индивидуальной основе.

    Глобальные компьютерные сети работают на основе технологии коммутации пакетов, кадров и ячеек. Чаще всего глобальная компьютерная сеть принадлежит телекоммуникационной компании, которая предоставляет службы своей сети в аренду. При отсутствии такой сети в нужном регионе предприятия самостоятельно создают глобальные сети, арендуя выделенные или коммутируемые каналы у телекоммуникационных или телефонных компаний.

    На арендованных каналах можно построить сеть с промежуточной коммутацией на основе какой-либо технологии глобальной сети (Х.25, frame relay, АТМ) или же соединять арендованными каналами непосредственно маршрутизаторы или мосты локальных сетей. Выбор способа использования арендованных каналов зависит от количества и топологии связей между локальными сетями.

    Глобальные сети делятся на магистральные сети и сети доступа.

Cтраница 1


Магистральные сети каждого здания в местах ответвления основной магистрали должны иметь задвижки в наружных колодцах для отключения здания в случае аварии.  


Магистральные сети - это такие сети, у которых все потребители подсоединяются к одной линии. Стоимость такой сети невысокая. Недостатком ее является ее малая надежность.  


Магистральные сети выполняют проводом марок АПР, АПВ. Вертикальные линии (стояки) прокладывают по лестничным клеткам в каналах, предусмотренных при изготовлении крупных блоков или панелей на заводах, в кирпичных зданиях - в каналах, устраиваемых строителями при выполнении кирпичной кладки. Горизонтальные магистральные линии между стояками прокладывают в бумажно-металлических, стальных (тонкостенных) или иных трубах, уложенных открыто по средней стенке подвала, в пустотах между панелями перекрытий подвала или в специальных каналах, имеющихся в блоках стен подвала.  

Магистральные сети выполняют проводом марок АПР, АПВ. Вертикальные линии (стояки) прокладывают по лестничным клеткам в каналах, предусмотренных при изготовлении крупных блоков или пане лей на заводах, в кирпичных зданиях - в каналах, устраиваемых строителями при выполнении кирпичной кладки. Горизонтальные магистральные линии между стояками прокладывают в бумажно-металличе ских, стальных (тонкостенных) и других трубах, уложенных открыто по средней стенке подвала, в пустотах между панелями перекрытий подвала или в специальных каналах, имеющихся в блоках стен подвала.  

Магистральные сети, выполненные проводами и кабелями. Наиболее подходящими для магистральных сетей являются одножильные провода или кабели с полимерной изоляцией. Если к тому же сечение этих проводов и кабелей определяется по экономической плотности тока (весьма близкой к экономической плотности тока для изолированных шин), то применение проводов и кабелей не повлечет за собой перерасхода проводниковых материалов.  

Магистральные сети, выполняемые проводами в трубах. При магистралях, выполняемых проводами в трубах, универсальность достигается либо наличием в сети проводов, пропускная способность которых учитывает рост нагрузки, либо закладкой труб для дополнительных проводов, либо наличием в достаточных количествах протяжных ящиков и коробок, обеспечивающих (при открытой прокладке) добавление труб без нарушения работы сети.  

Магистральные сети от подстанций к шкафам управления и силовым распределительным пунктам выполняют магистральными шинопроводами ШМА на токи 1600, 2500 А и четырех - жильным кабелем марки АВВГ. В литейных цехах применяют шинопровод с усиленной изоляцией.  

Магистральные сети в запыленных зонах выполнены специальным шинопроводом с уплотнением ШМА73УП с соединением стыков между секциями сваркой. Для ответвлений использованы секции без защитных и коммутационных аппаратов. На участках, где ответвления отсутствуют, предусмотрены линии из многоамперных кабелей АсВВ сечением 1500 мм2 и допустимым током 150 0 А.  

Магистральные сети от подстанции в главном производственном корпусе выполняют магистральными шинопроводами ШМА на ток 1600 - 2500 А и кабелями АВВГ, АСВВ, ААШВ. Кабели от автоматов подстанции до распределительных пунктов и шкафов управления отдельных крупных электроприемников (мощностью более 100 кВт) прокладывают открыто на лотках, устанавливаемых на мостиках для обслуживания светильников. Металлические мостики сооружают в межферменном пространстве одноэтажной части корпуса. Спуски от них к силовым пунктам осуществляют по колоннам.  

Магистральные сети в схемах электроснабжения промышленных предприятий и отдельных цехов за последнее время получили большое распространение, и в дальнейшем следует ожидать еще большего их применения.  

Цель:

1. Ознакомить слушателей с назначением, основными характеристиками, структурой МЦСС, а также с характеристиками ее основных элементов.

2. Сформировать у слушателей представление о МЦСС как об основной, базовой подсистеме новой телекоммуникационной сети МПС.

Время и дата проведения занятия: 9.15 – 10г.

Место: аудитория № 000 ПГУПС

Учебные вопросы и планируемое время:

Вводная часть

Структура МЦСС МПС РФ. Характеристика основных элементов

Система управления МЦСС

Основные системы обеспечения функционирования МЦСС

Система технической эксплуатации МЦСС

Заключительная часть

Синхронные цифровые сети SDH

Волоконно-оптические сети

ВВЕДЕНИЕ

Как и для любой системы управления, эффективность управления федеральным железнодорожным транспортом в значительной степени определяется характеристиками телекоммуникационной сети – одной из важнейших составляющих инфраструктуры системы управления МПС России.

Проведенный в начале 90-х годов анализ показателей функционирования этой сети показал, что основу ее составляет первичная сеть связи МПС, базирующаяся в основном на симметричных кабелях связи. Протяженность сети достигает 86000 километров, при этом сеть связи МПС обслуживает приблизительно миллион пользовательских линий связи. Характеристики действующей сети связи перестали удовлетворять технологическим потребностям МПС и не имели существенных перспектив улучшения при неизменном составе ее структуры.

Исходя из всего вышеизложенного, МПС решило создать новую, полностью цифровую сеть связи с целью предоставления всего спектра современных услуг связи как внутриотраслевым, так другим пользователям. Последнее обусловлено тем, что МПС имеет лицензию Госкомсвязи России на предоставление услуг местной связи на территории России. Используя свою обширную технологическую сеть, МПС является вторым по величине (по количеству пользовательских линий связи) телекоммуникационным провайдером, действующим сегодня в России.

При разработке проекта создания новой телекоммуникационной сети МПС с учетом результатов анализа развития потребностей мирового и российского телекоммуникационных рынков было предусмотрено и существенное увеличение резерва емкости создаваемой сети связи МПС для предполагаемого роста информационных потоков. (Данные анализа развития международного трафика свидетельствуют о том, что в настоящее время спрос на услуги сети Интернет характеризуется экспоненциальным ростом. Для междугородного российского трафика характерен устойчивый рост спроса на услуги телефонии для населения и передачи данных для предприятий. Потребности внедрения новых информационных технологий на железнодорожном транспорте, в основном, характеризуются ростом спроса на услуги по передаче данных. При этом резерв емкости ранее созданных сетей связи, рассчитанный на перспективу развития на 10 лет, расходуется за 3-4 года.) .

Проект создания новой телекоммуникационной сети МПС РФ имел важные достоинства, обеспечивающие его значительную конкурентоспособность при предоставлении услуг местной, междугородной и международной связи. Эти достоинства основывались:

На использовании для строительства готовой инфраструктуры федерального железнодорожного транспорта (земельная полоса отвода, контактная сеть, устройства электроснабжения, технические здания и сооружения), что значительно сокращало сроки и стоимость строительства;

На географическом положении российских железных дорог, обеспечивающем соединение Европы с Америкой и Азией посредством высокоскоростных линий связи по кратчайшему пути.

Таким образом, создаваемая новая сеть телекоммуникаций МПС РФ должна была, во-первых, полностью обеспечить ведомственные потребности в услугах связи, а, кроме того, стать:

Кратчайшим маршрутом на направлении восток-запад для транзита международного трафика;

Тем резервом телекоммуникационной емкости, который уже сегодня мог бы быть реализован, и в первую очередь зарубежными потребителями на договорной основе;

Взаимоувязанной сетью коммутационных портов (шлюзов), расположенных в крупных городах России (управления железных дорог и центры субъектов Российской Федерации) и обеспечивающих сопряжение (подключение) местных операторов связи различной формы собственности с международными и междугородными сетями связи.

Для реализации широкомасштабного проекта модернизации информационно-технологического сегмента инфраструктуры МПС РФ в феврале 1997 года было создано Закрытое Акционерное Общество "Компания ТрансТелеКом" (КТТК). Основным видом деятельности КТТК стало строительство и эксплуатация высокоскоростной телекоммуникационной сети в полосе отвода железных дорог МПС РФ с целью обеспечения требуемых услуг связи в интересах МПС РФ, а также использования этой сети в коммерческих целях. Акционерами КТТК в настоящее время выступают все 17 российских железных дорог , каждая из которых владеет 3% акций (всего МПС принадлежит 51% акций компании).

КТТК состоит из шести управлений (эксплуатация сети связи; развитие и научно-техническая политика; экономика и финансы; коммерческое; строительство сети связи; управление делами), возглавляемых вице-президентами , и бухгалтерии .

Президент, вице-президенты и главный бухгалтер образуют правление ТТК , которое обеспечивает оперативное руководство повседневной деятельностью компании.

Совет директоров КТТК состоит из 9 человек.

Для организации процесса продаж, технической эксплуатации и поддержки телекоммуникационной сети в регионах России и ближнего зарубежья ТрансТелеКом» к настоящему времени создало 18 региональных компаний (региональных операторов связи):

2. ТрансТелеКом ДВ (Хабаровск);

3. ТрансТелеКом Чита (Чита);

4. Байкал ТрансТелеКом (Иркутск);

5. Сиб - ТрансТелеКом (Красноярск);

6. Зап - Сиб ТрансТелеКом (Новосибирск);

7. ЮжноУрал ТрансТелеКом (Челябинск);

8. Уральские мобильные сети (Екатеринбург);

9. Самара ТрансТелеКом (Самара);

10. Волга ТрансТелеКом (Саратов);

11. Транс ТелеКом - НН (Нижний Новгород);

12. Центр ТрансТелеКом (Москва);

13. СеверТрансТелеКом (Ярославль);

14. Санкт-петербургский ТЕЛЕПОРТ (Санкт-Петербург);

15. Юго - Восток ТрансТелеКом (Воронеж);

16. Кавказ - ТрансТелеКом (Ростов-на-Дону);

17. Калининград ТрансТелеКом;

18. СП ЗАО "БелТрансТелеКом".

В течение всего лишь трех лет КТТК создала первую и единственную пока в России полностью волоконно-оптическую сеть связи - МЦСС МПС РФ и в настоящее время с учетом перспективы объема и качества предоставления услуг связи претендует на роль одного из ведущих операторов в России (после).

С учетом вышеизложенного новая телекоммуникационная сеть МПС РФ, и в первую очередь, ее ядро – МЦСС представляет несомненный интерес для более детального знакомства с назначением, структурой, основными характеристиками и возможностями по предоставлению услуг связи.

1. СТРУКТУРА МАГИСТРАЛЬНОЙ ЦИФРОВОЙ СЕТИ СВЯЗИ МПС РФ. ХАРАКТЕРИСТИКА ОСНОВНЫХ ЭЛЕМЕНТОВ

Телекоммуникационная сеть КТТК - представляет собой совокупность Единой Магистральной цифровой сети связи (ЕМЦСС), сети АТМ, сети IP MPLS и сетей доступа, интегрированных в единую взаимоувязанную мультисервисную сеть. Основу телекоммуникационной сети КТТК, на которой базируются остальные ее элементы, составляет Единая магистральная цифровая сеть связи – первичная (транспортная) сеть по своей сути.

1.1. Единая магистральная цифровая сеть связи.

ЕМЦСС представляет собой первичную сеть связи, состоящую из двух важнейших элементов:

Магистральной Цифровой Сети Связи (МЦСС), образованной волоконно-оптическими линиями передачи (ВОЛП);

Сети Фиксированной спутниковой службы (ФСС) «Транстелесат».

МЦСС ЗАО "Компания ТрансТелеКом" имеет в настоящее время протяженность более 48 тысяч километров и представляет собой единый технический комплекс, основу которого составляют: линейно-кабельные сооружения (ЛКС), каналообразующее оборудование, единая система контроля и управления, а также обеспечивающие системы электропитания, синхронизации и служебной связи.

По своему пространственному размаху и объему предоставления услуг МЦСС сопоставима с сетями других крупных национальных операторов. Топология сети в значительной степени повторяет существующую топологию железных дорог МПС РФ. Ячеистая структура МЦСС охватывает 70 из 89 регионов РФ - практически всю густонаселенную территорию страны. Общая протяженность оптического кабеля МЦСС к концу 2001 г. превысит 45000 км. В составе МЦСС более 950 сетевых узлов (станций) - точек выделения ресурса сети, в том числе и потенциальные точки взаимодействия с операторами других государств (Финляндии, стран Балтии, Польши, Украины, Казахстана, Монголии, Китая, Кореи).

В МЦСС по показателям протяженности и пропускной способности выделяются две основные линии связи:

- в направлении Восток – Запад : линия «Находка – Хабаровск – Москва – Санкт-Петербург – Бусловская (государственная граница с Финляндией)»;

- в направлении Север - Юг – линия «Москва – Новороссийск».

Монтаж линейно-кабельных сооружений сети осуществлен способом подвески волоконно-оптического кабеля на опорах контактной сети (опорах линий автоблокировки) МПС, либо прокладкой ВОК в грунте (в пластмассовых трубопроводах) в полосе отвода железных дорог МПС.

Созданная топология сети позволяет обеспечить резервирование связи в случае аварии на кабельных трассах. Высокая надежность сети обеспечивается резервированием волоконно-оптических линий связи (ВОЛП) по географически разнесенным маршрутам и налаженной системой эксплуатации линейно-кабельных сооружений.

Базовой технологией для построения магистральной первичной сети выбрана SDH-технология (Synchronous Digital Hierarchy), обеспечивающая требуемую масштабируемостьМбит/с), как по пропускной способности, так и по зоне покрытия, позволяющая наиболее активно эксплуатировать оптические каналы.

Сеть построена с использованием SDH мультиплексоров в основном производства Lucent Technologies, способных мультиплексировать стандартные сигналы PDH и SDH до уровня 2.5 Гбит/с (STM-16). Широкий диапазон, высокая пропускная способность и гибкие возможности подключения делают SDH мультиплексоры основным элементом эффективных и экономичных магистральных сетей.

Применяемое оборудование в совокупности с SDH-технологией позволяют повысить надежность первичной транспортной сети за счет объединения ее узлов в кольцевые структуры, что дает возможность системе управления сетью автоматически переключать основной канал на обходной в случае отклонения качественных параметров основного канала от нормы. Переключения в сети происходят без потери передаваемой информации.

Сеть ФСС

Сеть ФСС «Транстелесат» представляет собой второй элемент ЕМЦСС и состоит из космического и наземного сегментов.

В качестве основного варианта космического сегмента используются два арендуемых ствола (транспондера) КА LM-1 с общим частотным ресурсом 54 Мгц. Геостационарный спутник связи LMI-1 (собственник – «Интерспутник») выведен на орбитальную позицию 75 градусов в. д. в апреле 1999 г. Ретранслятор имеет 28 транспондеров диапазона С (6 / 4 ГГц) и 16 транспондеров диапазона Ku (14 /11-12 ГГц). Ширина полосы в С-диапазоне 36 МГц, в Ku-диапазоне – 27 МГц. Передающие устройства транспондеров Северной зоны в Ku-диапазоне. При этом обеспечивается уровень излучаемой мощности 48 dBW с зоной покрытия всей территории России. Зона покрытия охватывает и приполярные области (выше 70 градусов северной широты), что, как правило, не возможно для геостационарных спутников. Срок службы ретранслятора – 15 лет.

Наземный сегмент сети (группировка земных станций спутниковой связи) базируется на технологии VSAT (Very Small Aperture Terminal) и представлен системой «SuperVSAТ» (фирма-производитель - NERA). При этом в сети «Транстелесат» обеспечиваются:

Передача информации на скоростях до 8448 Кбит/c (для резервирования МЦСС);

Работа любой станции сети одновременно в 2-х транспондерах;

Передача и прием цифрового телевидения в формате MPEG-2.

Группировка земных станций сети «Транстелесат» включает в себя:

Центральная станция спутниковой связи (ЦС) – диаметр антенны 7,3 м, мощность передатчика - 500 Вт;

20 Узловых станций спутниковой связи (УС) – диаметр антенны 3,7 м, мощность передатчика - 350 Вт;

До 96 Абонентских станций спутниковой связи (АС) – диаметр антенны 2,4 м, мощность передатчика - 60 Вт.

Частотный ресурс стволов КА в зависимости от задач может динамически перераспределяться между станциями спутниковой связи. В сети ФСС «Транстелесат» применяется многостанционный доступ с частотным разделением (МДЧР) в режиме закрепленных каналов (PAMA) или в режиме предоставления канала по требованию (DAMA).

На разных этапах строительства и эксплуатации МЦСС планируется различное использование пропускной способности сети ФСС «Транстелесат».

На этапе взаимоувязки фрагментов МЦСС от каждой УС планируется обеспечивать передачу по четырем информационным направлениям на такие же УС цифровых потоков со скоростями от 64 до 640 Кбит/с в зависимости от требуемого трафика. Скорость в одном из четырех потоков при передаче его на ЦС может быть доведена до 2048 Кбит/с. Для передачи этих потоков будут использованы закрепленные каналы (режим PAMA).

На этапе привязки к МЦСС абонентских станций (период до 2003 года) планируется в режиме PAMA с каждой УС обеспечить одновременную передачу по четырем направлениям на АС информационные потоки со скоростями от 64 до 384 Кбит/с.

В режиме DAMA каждая УС сможет обслуживать до 812 своих региональных АС со скоростями передачи от 64 до 384 Кбит/с.

При использовании на УС телевизионного модема для трансляции цифрового телевидения на ЦСМбит/с) скорость в направлении АС составит 64 Кбит/с.

При выходе из строя участка ВОЛП МЦСС планируется автоматический перевод ближайших к этому аварийному участку УС в режим резервирования важнейших каналов ВОЛП. Для этого за счет закрытия определенных заранее направлений связи освобождается частотный ресурс ретранслятора, который и задействуется для организации резервного спутникового моста между УС на скорости 8448 Кбит/с.

Привязка удаленных абонентов

Абонентские станции спутниковой связи работают в направлении своих региональных УС, которые, в свою очередь, имеют прямой выход на МЦСС. При этом АС совместно со своей региональной УС могут работать:

В режиме PAMA (по закрепленному каналу связи) при достаточно большом трафике;

В режиме DAMA (предоставление канала по требованию) при небольшом трафике.

Каналы по требованию предоставляются централизованно от системы управления сетью (ACS). Так как количество УС в сети 20, и каждая УС в сети может обеспечивать в режиме PAMA четыре направления, то потенциальное количество АС в этом режиме может достигать 80. ЦС после завершения ввода в эксплуатацию всей МЦСС может быть переведена на привязку 18-ти АС к ЦС (направления ЦС-УС/Калининград и ЦС-УС/Южно-Сахалинск остаются без изменений). Таким образом, максимальное число АС в сети при работе в режиме PAMA составляет 98.

При небольших объемах трафика целесообразно использовать режим с предоставлением каналов по требованию (DAMA). Это позволит увеличить количество АС в сети до 300-320.

Так как в режиме DAMA, в основном, планируется предоставлять пользователям каналы BRI (2B+D или B+D), а энергетический потенциал УС, рассчитанный на резервирование МЦСС на скорости 8448 Кбит/c, позволяет на таких каналах обслуживать одновременно до 8 направлений связи, то потенциально, при дооборудовании УС дополнительными 4-мя модемами спутниковой связи, сеть ФСС может быть расширена до АС, работающими в режиме DAMA.

После проведенного обзора назначения и основных характеристик ЕМЦСС представляется целесообразным более детально познакомиться с основными элементами инфраструктуры волоконно-оптической Магистральной цифровой сети связи.

Волоконно-оптический кабель МЦСС

Основу линейно-кабельных сооружений МЦСС составляют магистральные волоконно-оптические кабели (ВОК). Спектр используемых при строительстве МЦСС ВОК достаточно широк и представлен как отечественной, так и зарубежной продукцией. Наибольшее распространение получили ВОК емкостью 16 волокон. Из 16 волокон ВОК 12 относятся к классу обычного одномодового волокна, а 4 имеют ненулевую смещенную дисперсию относительно длины волны l=1550 нм (третье окно прозрачности) и предназначены для перспективного в будущем использования многоканальных систем передачи с уплотнением по длине световой волны (DWDM). Смещение нулевой дисперсии обеспечивает минимизацию комбинационных составляющих и позволяет по одному такому волокну вести передачу со скоростью 20 Гбит/с и выше. Таким образом, в дальнейшем пропускная способность МЦСС может быть легко расширена с помощью новейшего электронного и оптического оборудования путем установки дополнительных блоков или подсистем в ранее установленные мультиплексоры.

Отечественные кабели представлены продукцией, выпускаемой: волоконно-оптическими кабелями для подвески на опорах типа ОКМС и волоконно-оптическими кабелями для прокладки в пластмассовых трубопроводах в грунте типа ОКМТ. Кабели типа ОКМС и ОКМТ имеют модульную конструкцию (представлены на рисунке 1.1.). Основные характеристики этих кабелей приведены в таблице 1.1.

643 " style="width:482.6pt;border-collapse:collapse;border:none">

№№ п/п

Наименование характеристики ВОК

Значение характеристики ВОК

ОКМС

ОКМТ

Число оптических волокон в кабеле, шт.

Число модулей в кабеле, шт.

Число оптических волокон в одном модуле, шт.

2, 4, 6, 8, 10, 12

2, 4, 6, 8, 10, 12

G.652, G.653, G.655

G.652, G.653, G.655

* Коэффициент затухания, дБ/км, не более, нормируемый на длине волны:

λ=1310 нм

λ=1550 нм

* Диапазон типовых значений длины волны отсечки, нм, не более:

* Хроматическая дисперсия, пс/(нм*км), не более, в диапазоне длин волн:

Номинальный наружный диаметр кабеля, мм

Температура эксплуатации, ° С

Температура монтажа, °С, не ниже

Строительная длина, км, не менее

Расчетная масса кабеля, кг

Длительное допустимое растягивающее усилие, кН

3,0; 5,0; 8,0; 10,0

1,5; 2,5

Прочность на разрыв, кН

8,0; 12,0; 20,0; 24,0

Примечания.

1. * - для одномодового стандартного оптического волокна по рекомендации ITU-T G.652.

2. Особенности конструкции и эксплуатации:

Срок службы - не менее 25 лет;

Полностью выполнен из диэлектрических материалов;

Не восприимчив к воздействию электрических полей;

Наличие высокопрочных защитных покровов (арамидные нити), центрального силового элемента (стеклопластиковый пруток);

Возможно изготовление с внешней оболочкой из полиэтилена, не распространяющего горение;



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
NexxDigital - компьютеры и операционные системы