NexxDigital - компьютеры и операционные системы

В конце шестидесятых годов американское агентство перспективных исследований в обороне DARPA приняло решение о создании экспериментальной сети под названием ARPANet. В семидесятых годах ARPANet стала считаться действующей сетью США, и через эту сеть можно было получить доступ к ведущим университетским и научным центрам США. В начале восьмидесятых годов началась стандартизация языков программирования, а затем и протоколов взаимодействия сетей. Результатом этой работы стала разработка семиуровневой модели сетевого взаимодействия ISO/OSI и семейства протоколов TCP/IP, которое стало основой для построения как локальных, так и глобальных сетей.

Базовые механизмы информационного обмена в сетях TCP/IP были в целом сформированы в начале восьмидесятых годов, и были направлены прежде всего на обеспечение доставки пакетов данных между различными операционными системами с использованием разнородных каналов связи. Несмотря на то, что идея создания сети ARPANet (впоследствии превратившейся в современный Интернет) принадлежала правительственной оборонной организации, фактически сеть зародилась в исследовательском мире, и наследовала традиции открытости академического сообщества. Ещё до коммерциализации Интернета (которая произошла в середине девяностых годов) многие авторитетные исследователи отмечали проблемы, связанные с безопасностью стека протоколов TCP/IP. Основные концепции протоколов TCP/IP не полностью удовлетворяют (а в ряде случаев и противоречат) современным представлениям о компьютерной безопасности.

До недавнего времени сеть Интернет использовалась в основном для обработки информации по относительно простым протоколам: электронная почта, передача файлов, удалённый доступ. Сегодня, благодаря широкому распространению технологий WWW, всё активнее применяются средства распределённой обработки мультимедийной информации. Одновременно с этим растёт объём данных, обрабатываемых в средах клиент/сервер и предназначенных для одновременного коллективного доступа большого числа абонентов. Разработано несколько протоколов прикладного уровня, обеспечивающих информационную безопасность таких приложений, как электронная почта (PEM, PGP и т.п.), WWW (Secure HTTP, SSL и т.п.), сетевое управление (SNMPv2 и т.п.). Однако наличие средств обеспечения безопасности в базовых протоколах семейства TCP/IP позволит осуществлять информационный обмен между широким спектром различных приложений и сервисных служб.

Краткая историческая справка появления протокола

В 1994 году Совет по архитектуре Интернет (IAB) выпустил отчет "Безопасность архитектуры Интернет". В этом документе описывались основные области применения дополнительных средств безопасности в сети Интернет, а именно защита от несанкционированного мониторинга, подмены пакетов и управления потоками данных. В числе первоочередных и наиболее важных защитных мер указывалась необходимость разработки концепции и основных механизмов обеспечения целостности и конфиденциальности потоков данных. Поскольку изменение базовых протоколов семейства TCP/IP вызвало бы полную перестройку сети Интернет, была поставлена задача обеспечения безопасности информационного обмена в открытых телекоммуникационных сетях на базе существующих протоколов. Таким образом, начала создаваться спецификация Secure IP, дополнительная по отношению к протоколам IPv4 и IPv6.

Архитектура IPSec

IP Security — это комплект протоколов, касающихся вопросов шифрования, аутентификации и обеспечения защиты при транспортировке IP-пакетов; в его состав сейчас входят почти 20 предложений по стандартам и 18 RFC.

Спецификация IP Security (известная сегодня как IPsec) разрабатывается Рабочей группой IP Security Protocol IETF . Первоначально IPsec включал в себя 3 алгоритмо-независимые базовые спецификации, опубликованные в качестве RFC-документов "Архитектура безопасности IP", "Аутентифицирующий заголовок (AH)", "Инкапсуляция зашифрованных данных (ESP)" (RFC1825, 1826 и 1827). Необходимо заметить, что в ноябре 1998 года Рабочая группа IP Security Protocol предложила новые версии этих спецификаций, имеющие в настоящее время статус предварительных стандартов, это RFC2401 — RFC2412. Отметим, что RFC1825-27 на протяжении уже нескольких лет считаются устаревшими и реально не используются. Кроме этого, существуют несколько алгоритмо-зависимых спецификаций, использующих протоколы MD5, SHA, DES.

Рис. 1 – Архитектура IPSec.

Рабочая группа IP Security Protocol разрабатывает также и протоколы управления ключевой информацией. В задачу этой группы входит разработка Internet Key Management Protocol (IKMP), протокола управления ключами прикладного уровня, не зависящего от используемых протоколов обеспечения безопасности. В настоящее время рассматриваются концепции управления ключами с использованием спецификации Internet Security Association and Key Management Protocol (ISAKMP) и протокола Oakley Key Determination Protocol. Спецификация ISAKMP описывает механизмы согласования атрибутов используемых протоколов, в то время как протокол Oakley позволяет устанавливать сессионные ключи на компьютеры сети Интернет. Ранее рассматривались также возможности использования механизмов управления ключами протокола SKIP, однако сейчас такие возможности реально практически нигде не используются. Создаваемые стандарты управления ключевой информацией, возможно, будут поддерживать Центры распределения ключей, аналогичные используемым в системе Kerberos . Протоколами ключевого управления для IPSec на основе Kerberos сейчас занимается относительно новая рабочая группа KINK (Kerberized Internet Negotiation of Keys).

Гарантии целостности и конфиденциальности данных в спецификации IPsec обеспечиваются за счет использования механизмов аутентификации и шифрования соответственно. Последние, в свою очередь, основаны на предварительном согласовании сторонами информационного обмена т.н. "контекста безопасности" – применяемых криптографических алгоритмов, алгоритмов управления ключевой информацией и их параметров. Спецификация IPsec предусматривает возможность поддержки сторонами информационного обмена различных протоколов и параметров аутентификации и шифрования пакетов данных, а также различных схем распределения ключей. При этом результатом согласования контекста безопасности является установление индекса параметров безопасности (SPI), представляющего собой указатель на определенный элемент внутренней структуры стороны информационного обмена, описывающей возможные наборы параметров безопасности.

По сути, IPSec, который станет составной частью IPv6, работает на третьем уровне, т. е. на сетевом уровне. В результате передаваемые IP-пакеты будут защищены прозрачным для сетевых приложений и инфраструктуры образом. В отличие от SSL (Secure Socket Layer), который работает на четвертом (т. е. транспортном) уровне и теснее связан с более высокими уровнями модели OSI, IPSec призван обеспечить низкоуровневую защиту.


Рис. 2 — Модель OSI/ISO.

К IP-данным, готовым к передаче по виртуальной частной сети, IPSec добавляет заголовок для идентификации защищенных пакетов. Перед передачей по Internet эти пакеты инкапсулируются в другие IP-пакеты. IPSec поддерживает несколько типов шифрования, в том числе Data Encryption Standard (DES) и Message Digest 5 (MD5).

Чтобы установить защищенное соединение, оба участника сеанса должны иметь возможность быстро согласовать параметры защиты, такие как алгоритмы аутентификации и ключи. IPSec поддерживает два типа схем управления ключами, с помощью которых участники могут согласовать параметры сеанса. Эта двойная поддержка в свое время вызвала определенные трения в IETF Working Group.

С текущей версией IP, IPv4, могут быть использованы или Internet Secure Association Key Management Protocol (ISAKMP), или Simple Key Management for Internet Protocol. С новой версией IP, IPv6, придется использовать ISAKMP, известный сейчас как IKE, хотя не исключается возможность использования SKIP. Однако, следует иметь в виду, что SKIP уже давно не рассматривается как кандидат управления ключами, и был исключён из списка возможных кандидатов ещё в 1997 г.

Заголовок AH

Аутентифицирующий заголовок (AH) является обычным опциональным заголовком и, как правило, располагается между основным заголовком пакета IP и полем данных. Наличие AH никак не влияет на процесс передачи информации транспортного и более высокого уровней. Основным и единственным назначением AH является обеспечение защиты от атак, связанных с несанкционированным изменением содержимого пакета, и в том числе от подмены исходного адреса сетевого уровня. Протоколы более высокого уровня должны быть модифицированы в целях осуществления проверки аутентичности полученных данных.

Формат AH достаточно прост и состоит из 96-битового заголовка и данных переменной длины, состоящих из 32-битовых слов. Названия полей достаточно ясно отражают их содержимое: Next Header указывает на следующий заголовок, Payload Len представляет длину пакета, SPI является указателем на контекст безопасности и Sequence Number Field содержит последовательный номер пакета.


Рис. 3 — Формат заголовка AH.

Последовательный номер пакета был введен в AH в 1997 году в ходе процесса пересмотра спецификации IPsec. Значение этого поля формируется отправителем и служит для защиты от атак, связанных с повторным использованием данных процесса аутентификации. Поскольку сеть Интернет не гарантирует порядок доставки пакетов, получатель должен хранить информацию о максимальном последовательном номере пакета, прошедшего успешную аутентификацию, и о получении некоторого числа пакетов, содержащих предыдущие последовательные номера (обычно это число равно 64).

В отличие от алгоритмов вычисления контрольной суммы, применяемых в протоколах передачи информации по коммутируемым линиям связи или по каналам локальных сетей и ориентированных на исправление случайных ошибок среды передачи, механизмы обеспечения целостности данных в открытых телекоммуникационных сетях должны иметь средства защиты от внесения целенаправленных изменений. Одним из таких механизмов является специальное применение алгоритма MD5: в процессе формирования AH последовательно вычисляется хэш-функция от объединения самого пакета и некоторого предварительно согласованного ключа, а затем от объединения полученного результата и преобразованного ключа. Данный механизм применяется по умолчанию в целях обеспечения всех реализаций IPv6, по крайней мере, одним общим алгоритмом, не подверженным экспортным ограничениям.

Заголовок ESP

В случае использования инкапсуляции зашифрованных данных заголовок ESP является последним в ряду опциональных заголовков, "видимых" в пакете. Поскольку основной целью ESP является обеспечение конфиденциальности данных, разные виды информации могут требовать применения существенно различных алгоритмов шифрования. Следовательно, формат ESP может претерпевать значительные изменения в зависимости от используемых криптографических алгоритмов. Тем не менее, можно выделить следующие обязательные поля: SPI, указывающее на контекст безопасности и Sequence Number Field, содержащее последовательный номер пакета. Поле "ESP Authentication Data" (контрольная сумма), не является обязательным в заголовке ESP. Получатель пакета ESP расшифровывает ESP заголовок и использует параметры и данные применяемого алгоритма шифрования для декодирования информации транспортного уровня.


Рис. 4 — Формат заголовка ESP.

Различают два режима применения ESP и AH (а также их комбинации) — транспортный и туннельный.

Транспортный режим

Транспортный режим используется для шифрования поля данных IP пакета, содержащего протоколы транспортного уровня (TCP, UDP, ICMP), которое, в свою очередь, содержит информацию прикладных служб. Примером применения транспортного режима является передача электронной почты. Все промежуточные узлы на маршруте пакета от отправителя к получателю используют только открытую информацию сетевого уровня и, возможно, некоторые опциональные заголовки пакета (в IPv6). Недостатком транспортного режима является отсутствие механизмов скрытия конкретных отправителя и получателя пакета, а также возможность проведения анализа трафика. Результатом такого анализа может стать информация об объемах и направлениях передачи информации, области интересов абонентов, расположение руководителей.

Туннельный режим

Туннельный режим предполагает шифрование всего пакета, включая заголовок сетевого уровня. Туннельный режим применяется в случае необходимости скрытия информационного обмена организации с внешним миром. При этом, адресные поля заголовка сетевого уровня пакета, использующего туннельный режим, заполняются межсетевым экраном организации и не содержат информации о конкретном отправителе пакета. При передаче информации из внешнего мира в локальную сеть организации в качестве адреса назначения используется сетевой адрес межсетевого экрана. После расшифровки межсетевым экраном начального заголовка сетевого уровня пакет направляется получателю.

Security Associations

Security Association (SA) — это соединение, которое предоставляет службы обеспечения безопасности трафика, который передаётся через него. Два компьютера на каждой стороне SA хранят режим, протокол, алгоритмы и ключи, используемые в SA. Каждый SA используется только в одном направлении. Для двунаправленной связи требуется два SA. Каждый SA реализует один режим и протокол; таким образом, если для одного пакета необходимо использовать два протокола (как например AH и ESP), то требуется два SA.

Политика безопасности

Политика безопасности хранится в SPD (База данных политики безопасности). SPD может указать для пакета данных одно из трёх действий: отбросить пакет, не обрабатывать пакет с помощью IPSec, обработать пакет с помощью IPSec. В последнем случае SPD также указывает, какой SA необходимо использовать (если, конечно, подходящий SA уже был создан) или указывает, с какими параметрами должен быть создан новый SA.

SPD является очень гибким механизмом управления, который допускает очень хорошее управление обработкой каждого пакета. Пакеты классифицируются по большому числу полей, и SPD может проверять некоторые или все поля для того, чтобы определить соответствующее действие. Это может привести к тому, что весь трафик между двумя машинами будет передаваться при помощи одного SA, либо отдельные SA будут использоваться для каждого приложения, или даже для каждого TCP соединения.

ISAKMP/Oakley

Протокол ISAKMP определяет общую структуру протоколов, которые используются для установления SA и для выполнения других функций управления ключами. ISAKMP поддерживает несколько Областей Интерпретации (DOI), одной из которых является IPSec-DOI. ISAKMP не определяет законченный протокол, а предоставляет "строительные блоки" для различных DOI и протоколов обмена ключами.

Протокол Oakley — это протокол определения ключа, использующий алгоритм замены ключа Диффи-Хеллмана. Протокол Oakley поддерживает идеальную прямую безопасность (Perfect Forward Secrecy — PFS). Наличие PFS означает невозможность расшифровки всего траффика при компрометации любого ключа в системе.

IKE

IKE — протокол обмена ключами по умолчанию для ISAKMP, на данный момент являющийся единственным. IKE находится на вершине ISAKMP и выполняет, собственно, установление как ISAKMP SA, так и IPSec SA. IKE поддерживает набор различных примитивных функций для использования в протоколах. Среди них можно выделить хэш-функцию и псевдослучайную функцию (PRF).

Хэш-функция — это функция, устойчивая к коллизиям. Под устойчивостью к коллизиям понимается тот факт, что невозможно найти два разных сообщения m 1 и m 2 , таких, что H(m 1) =H(m 2) , где H — хэш функция.

Что касается псеводслучайных функций, то в настоящее время вместо специальных PRF используется хэш функция в конструкции HMAC (HMAC — механизм аутентификации сообщений с использованием хэш функций). Для определения HMAC нам понадобится криптографическая хэш функция (обозначим её как H) и секретный ключ K. Мы предполагаем, что H является хэш функцией, где данные хэшируются с помощью процедуры сжатия, последовательно применяемой к последовательности блоков данных. Мы обозначим за B длину таких блоков в байтах, а длину блоков, полученных в результате хэширования — как L (L

Ipad = байт 0x36, повторённый B раз;
opad = байт 0x5C, повторённый B раз.

Для вычисления HMAC от данных "text" необходимо выполнить следующую операцию:

H(K XOR opad, H(K XOR ipad, text))

Из описания следует, что IKE использует для аутентификации сторон HASH величины. Отметим, что под HASH в данном случае подразумевается исключительно название Payload в ISAKMP, и это название не имеет ничего общего со своим содержимым.

Атаки на AH, ESP и IKE.

Все виды атак на компоненты IPSec можно разделить на следующие группы: атаки, эксплуатирующие конечность ресурсов системы (типичный пример — атака "Отказ в обслуживании", Denial-of-service или DOS-атака), атаки, использующие особенности и ошибки конкретной реализации IPSec и, наконец, атаки, основанные на слабостях самих протоколов. AH и ESP. Чисто криптографические атаки можно не рассматривать — оба протокола определяют понятие "трансформ", куда скрывают всю криптографию. Если используемый криптоалгоритм стоек, а определенный с ним трансформ не вносит дополнительных слабостей (это не всегда так, поэтому правильнее рассматривать стойкость всей системы — Протокол-Трансформ-Алгоритм), то с этой стороны все нормально. Что остается? Replay Attack — нивелируется за счет использования Sequence Number (в одном единственном случае это не работает — при использовании ESP без аутентификации и без AH). Далее, порядок выполнения действий (сначала шифрация, потом аутентификация) гарантирует быструю отбраковку "плохих" пакетов (более того, согласно последним исследованиям в мире криптографии, именно такой порядок действий наиболее безопасен, обратный порядок в некоторых, правда очень частных случаях, может привести к потенциальным дырам в безопасности; к счастью, ни SSL, ни IKE, ни другие распространенные протоколы с порядком действий "сначала аутентифицировать, потом зашифровать", к этим частным случаям не относятся, и, стало быть, этих дыр не имеют). Остается Denial-Of-Service атака. Как известно, это атака, от которой не существует полной защиты. Тем не менее, быстрая отбраковка плохих пакетов и отсутствие какой-либо внешней реакции на них (согласно RFC) позволяют более-менее хорошо справляться с этой атакой. В принципе, большинству (если не всем) известным сетевым атакам (sniffing, spoofing, hijacking и т.п.) AH и ESP при правильном их применении успешно противостоят. С IKE несколько сложнее. Протокол очень сложный, тяжел для анализа. Кроме того, в силу опечаток (в формуле вычисления HASH_R) при его написании и не совсем удачных решений (тот же HASH_R и HASH_I) он содержит несколько потенциальных "дыр" (в частности, в первой фазе не все Payload в сообщении аутентифицируются), впрочем, они не очень серьезные и ведут, максимум, к отказу в установлении соединения.От атак типа replay, spoofing, sniffing, hijacking IKE более-менее успешно защищается. С криптографией несколько сложнее, — она не вынесена, как в AH и ESP, отдельно, а реализована в самом протоколе. Тем не менее, при использовании стойких алгоритмов и примитивов (PRF), проблем быть не должно. В какой-то степени можно рассматривать как слабость IPsec то, что в качестве единственного обязательного к реализации криптоалгоритма в нынешних спецификациях указывается DES (это справедливо и для ESP, и для IKE), 56 бит ключа которого уже не считаются достаточными. Тем не менее, это чисто формальная слабость — сами спецификации являются алгоритмо-независимыми, и практически все известные вендоры давно реализовали 3DES (а некоторые уже и AES).Таким образом, при правильной реализации, наиболее "опасной" атакой остается Denial-Of-Service.

Оценка протокола

Протокол IPSec получил неоднозначную оценку со стороны специалистов. С одной стороны, отмечается, что протокол IPSec является лучшим среди всех других протоколов защиты передаваемых по сети данных, разработанных ранее (включая разработанный Microsoft PPTP). По мнению другой стороны, присутствует чрезмерная сложность и избыточность протокола. Так, Niels Ferguson и Bruce Schneier в своей работе "A Cryptographic Evaluation of IPsec" отмечают, что они обнаружили серьёзные проблемы безопасности практически во всех главных компонентах IPsec. Эти авторы также отмечают, что набор протоколов требует серьёзной доработки для того, чтобы он обеспечивал хороший уровень безопасности. В работе приведено описание ряда атак, использующих как слабости общей схемы обработки данных, так и слабости криптографических алгоритмов.

Заключение

В этой статье мы рассмотрели некоторые основные моменты, касающиеся протокола сетевой безопасности IPsec. Не лишним будет отметить, что протокол IPsec доминирует в большинстве реализаций виртуальных частных сетей. В настоящее время на рынке представлены как программные реализации (например, протокол реализован в операционной системе Windows2000 компании Microsoft), так и программно-аппаратные реализации IPsec — это решения Cisco , Nokia . Несмотря на большое число различных решений, все они довольно хорошо совместимы друг с другом. В заключение статьи приводится таблица, в которой производится сравнение IPSec и широко распространённого сейчас SSL.

Особенности IPSec SSL
Аппаратная независимость Да Да
Код Не требуется изменений для приложений. Может потребовать доступ к исходному коду стека TCP/IP. Требуются изменения в приложениях. Могут потребоваться новые DLL или доступ к исходному коду приложений.
Защита IP пакет целиком. Включает защиту для протоколов высших уровней. Только уровень приложений.
Фильтрация пакетов Основана на аутентифицированных заголовках, адресах отправителя и получателя, и т.п. Простая и дешёвая. Подходит для роутеров. Основана на содержимом и семантике высокого уровня. Более интеллектуальная и более сложная.
Производительность Меньшее число переключений контекста и перемещения данных. Большее число переключений контекста и перемещения данных. Большие блоки данных могут ускорить криптографические операции и обеспечить лучшее сжатие.
Платформы Любые системы, включая роутеры В основном, конечные системы (клиенты/серверы), также firewalls.
Firewall/VPN Весь трафик защищён. Защищён только трафик уровня приложений. ICMP, RSVP, QoS и т.п. могут быть незащищены.
Прозрачность Для пользователей и приложений. Только для пользователей.
Текущий статус Появляющийся стандарт. Широко используется WWW браузерами, также используется некоторыми другими продуктами.

Ссылки

  • www.ietf.org/html.charters/ipsec-charter.html — Домашняя страничка рабочей группы IETF. Там же находятся ссылки на RFC и предложения по стандартам.
  • www.microsoft.com/rus/windows2000/library/security/w2k_IPSecurity.asp – Информация о реализации протокола IPSec в Windows2000 Server.

Благодарности

Вконтакте

Одноклассники

В современном мире различные VPN-технологии используются повсеместно. Некоторые (например, PPTP) со временем признаются небезопасными и постепенно отмирают, другие (OpenVPN), наоборот, с каждым годом наращивают обороты. Но бессменным лидером и самой узнаваемой технологией для создания и поддержания защищенных частных каналов по-прежнему остается IPsec VPN. Иногда при пентесте можно обнаружить серьезно защищенную сеть с торчащим наружу лишь пятисотым UDP-портом. Все остальное может быть закрыто, пропатчено и надежно фильтроваться. В такой ситуации может возникнуть мысль, что здесь и делать-то особо нечего. Но это не всегда так. Кроме того, широко распространена мысль, что IPsec даже в дефолтных конфигурациях неприступен и обеспечивает должный уровень безопасности. Именно такую ситуацию сегодня и посмотрим на деле. Но вначале, для того чтобы максимально эффективно бороться c IPsec, нужно разобраться, что он собой представляет и как работает. Этим и займемся!

IPsec изнутри

Перед тем как переходить непосредственно к самому IPsec, неплохо бы вспомнить, какие вообще бывают типы VPN. Классификаций VPN великое множество, но мы не будем глубоко погружаться в сетевые технологии и возьмем самую простую. Поэтому будем делить VPN на два основных типа - site-to-site VPN-подключения (их еще можно назвать постоянные) и remote access VPN (RA, они же временные).
Первый тип служит для постоянной связи различных сетевых островков, например центрального офиса со множеством разбросанных филиалов. Ну а RA VPN представляет собой сценарий, когда клиент подключается на небольшой промежуток времени, получает доступ к определенным сетевым ресурсам и после завершения работы благополучно отключается.

Нас будет интересовать именно второй вариант, так как в случае успешной атаки удается сразу же получить доступ к внутренней сети предприятия, что для пентестера достаточно серьезное достижение. IPsec, в свою очередь, позволяет реализовывать как site-to-site, так и remote access VPN. Что же это за технология и из каких компонентов она состоит?

Стоит отметить, что IPsec - это не один, а целый набор различных протоколов, которые обеспечивают прозрачную и безопасную защиту данных. Специфика IPsec состоит в том, что он реализуется на сетевом уровне, дополняя его таким образом, чтобы для последующих уровней все происходило незаметно. Основная сложность состоит в том, что в процессе установления соединения двум участникам защищенного канала необходимо согласовать довольно большое количество различных параметров. А именно - они должны аутентифицировать друг друга, сгенерировать и обменяться ключами (причем через недоверенную среду), а также договориться, с помощью каких протоколов шифровать данные.

Именно по этой причине IPsec и состоит из стека протоколов, обязанность которых лежит в том, чтобы обеспечить установление защищенного соединения, его работу и управление им. Весь процесс установления соединения включает две фазы: первая фаза применяется для того, чтобы обеспечить безопасный обмен ISAKMP-сообщений уже во второй фазе. ISAKMP (Internet Security Association and Key Management Protocol) - это протокол, который служит для согласования и обновления политик безопасности (SA) между участниками VPN-соединения. В этих политиках как раз и указано, с помощью какого протокола шифровать (AES или 3DES) и с помощью чего аутентифицировать (SHA или MD5).

Две основные фазы IPsec

Итак, мы выяснили, что вначале участникам нужно договориться, с помощью каких механизмов будет создано защищенное соединение, поэтому теперь в дело вступает протокол IKE. IKE (Internet Key Exchange) используется для формирования IPsec SA (Security Association, те самые политики безопасности), проще говоря - согласования работы участников защищенного соединения. Через этот протокол участники договариваются, какой алгоритм шифрования будет применен, по какому алгоритму будет производиться проверка целостности и как аутентифицировать друг друга. Нужно заметить, что на сегодняшний день существует две версии протокола: IKEv1 и IKEv2. Нас будет интересовать только IKEv1: несмотря на то что IETF (The Internet Engineering Task Force) впервые представили его в 1998 году, он по-прежнему еще очень часто используется, особенно для RA VPN (см. рис. 1).

Что касается IKEv2, первые его наброски были сделаны в 2005 году, полностью описан он был в RFC 5996 (2010 год), и лишь в конце прошлого года он был объявлен на роль стандарта Интернет (RFC 7296). Более подробно про различия между IKEv1 и IKEv2 можно прочитать во врезке. Разобравшись с IKE, возвращаемся к фазам IPsec. В процессе первой фазы участники аутентифицируют друг друга и договариваются о параметрах установки специального соединения, предназначенного только для обмена информацией о желаемых алгоритмах шифрования и прочих деталях будущего IPsec-туннеля. Параметры этого первого туннеля (который еще называется ISAKMP-туннель) определяются политикой ISAKMP. Первым делом согласуются хеши и алгоритмы шифрования, далее идет обмен ключами Диффи - Хеллмана (DH), и лишь затем происходит выяснение, кто есть кто. То есть в последнюю очередь идет процесс аутентификации, либо по PSK-, либо по RSA-ключу. И если стороны пришли к соглашению, то устанавливается ISAKMP-туннель, по которому уже проходит вторая фаза IKE.

На второй фазе уже доверяющие друг другу участники договариваются о том, как строить основной туннель для передачи непосредственно данных. Они предлагают друг другу варианты, указанные в параметре transform-set, и, если приходят к согласию, поднимают основной туннель. Важно подчеркнуть, что после его установления вспомогательный ISAKMP-туннель никуда не девается - он используется для периодического обновления SA основного туннеля. В итоге IPsec в некоем роде устанавливает не один, а целых два туннеля.

Как обрабатывать данные

Теперь пару слов про transform-set. Нужно ведь как-то шифровать данные, идущие через туннель. Поэтому в типовой конфигурации transform-set представляет собой набор параметров, в которых явно указано, как нужно обрабатывать пакет. Соответственно, существует два варианта такой обработки данных - это протоколы ESP и AH. ESP (Encapsulating Security Payload) занимается непосредственно шифрованием данных, а также может обеспечивать проверку целостности данных. AH (Authentication Header), в свою очередь, отвечает лишь за аутентификацию источника и проверку целостности данных.

Например, команда crypto ipsec transform-set SET10 esp-aes укажет роутеру, что transform-set с именем SET10 должен работать только по протоколу ESP и c шифрованием по алгоритму AES. Забегая вперед, скажу, что здесь и далее мы будем использовать в качестве цели маршрутизаторы и файрволы компании Cisco. Собственно с ESP все более-менее понятно, его дело - шифровать и этим обеспечивать конфиденциальность, но зачем тогда нужен AH? AH обеспечивает аутентификацию данных, то есть подтверждает, что эти данные пришли именно от того, с кем мы установили связь, и не были изменены по дороге. Он обеспечивает то, что еще иногда называется anti-replay защитой. В современных сетях AH практически не используется, везде можно встретить только ESP.

Параметры (они же SA), выбираемые для шифрования информации в IPsec-туннеле, имеют время жизни, по истечении которого должны быть заменены. По умолчанию параметр lifetime IPsec SA составляет 86 400 с, или 24 ч.
В итоге участники получили шифрованный туннель с параметрами, которые их всех устраивают, и направляют туда потоки данных, подлежащие шифрованию. Периодически, в соответствии с lifetime, обновляются ключи шифрования для основного туннеля: участники вновь связываются по ISAKMP-туннелю, проходят вторую фазу и заново устанавливают SA.

Режимы IKEv1

Мы рассмотрели в первом приближении основную механику работы IPsec, но необходимо заострить внимание еще на нескольких вещах. Первая фаза, помимо всего прочего, может работать в двух режимах: main mode или aggressive mode. Первый вариант мы уже рассмотрели выше, но нас интересует как раз aggressive mode. В этом режиме используется три сообщения (вместо шести в main-режиме). При этом тот, кто инициирует соединение, отдает все свои данные разом - что он хочет и что умеет, а также свою часть обмена DH. Затем ответная сторона сразу завершает свою часть генерации DH. В итоге в этом режиме, по сути, всего два этапа. То есть первые два этапа из main mode (согласование хешей и обмен DH) как бы спрессовываются в один. В результате этот режим значительно опаснее по той причине, что в ответ приходит много технической информации в plaintext’е. И самое главное - VPN-шлюз может прислать хеш пароля, который используется для аутентификации на первой фазе (этот пароль еще часто называется pre-shared key или PSK).

Ну а все последующее шифрование происходит без изменений, как обычно. Почему же тогда этот режим по-прежнему используется? Дело в том, что он намного быстрее, примерно в два раза. Отдельный интерес для пентестера представляет тот факт, что aggressive-режим очень часто используется в RA IPsec VPN. Еще одна небольшая особенность RA IPsec VPN при использовании агрессивного режима: когда клиент обращается к серверу, он шлет ему идентификатор (имя группы). Tunnel group name (см. рис. 2) - это имя записи, которая содержит в себе набор политик для данного IPsec-подключения. Это уже одна из фич, специфичных оборудованию Cisco.


Двух фаз оказалось недостаточно

Казалось бы, что получается и так не слишком простая схема работы, но на деле все еще чуть сложнее. Со временем стало ясно, что только одного PSK недостаточно для обеспечения безопасности. Например, в случае компрометации рабочей станции сотрудника атакующий смог бы сразу получить доступ ко всей внутренней сети предприятия. Поэтому была разработана фаза 1.5 прямо между первой и второй классическими фазами. К слову, эта фаза обычно не используется в стандартном site-to-site VPN-соединении, а применяется при организации удаленных VPN-подключений (наш случай). Эта фаза содержит в себе два новых расширения - Extended Authentication (XAUTH) и Mode-Configuration (MODECFG).

XAUTH - это дополнительная аутентификация пользователей в пределах IKE-протокола. Эту аутентификацию еще иногда называют вторым фактором IPsec. Ну а MODECFG служит для передачи дополнительной информации клиенту, это может быть IP-адрес, маска, DNS-сервер и прочее. Видно, что эта фаза просто дополняет ранее рассмотренные, но полезность ее несомненна.

IKEv2 vs IKEv1

Оба протокола работают по UDP-порту с номером 500, но между собой несовместимы, не допускается ситуация, чтобы на одном конце туннеля был IKEv1, а на другом - IKEv2. Вот основные отличия второй версии от первой:

  • В IKEv2 больше нет таких понятий, как aggressive- или main-режимы.
  • В IKEv2 термин первая фаза заменен на IKE_SA_INIT (обмен двумя сообщениями, обеспечивающий согласование протоколов шифрования/хеширования и генерацию ключей DH), а вторая фаза - на IKE_AUTH (тоже два сообщения, реализующие собственно аутентификацию).
  • Mode Config (то, что в IKEv1 называлось фаза 1.5) теперь описан прямо в спецификации протокола и является его неотъемлемой частью.
  • В IKEv2 добавился дополнительный механизм защиты от DoS-атак. Суть его в том, что прежде, чем отвечать на каждый запрос в установлении защищенного соединения (IKE_SA_INIT) IKEv2, VPN-шлюз шлет источнику такого запроса некий cookie и ждет ответа. Если источник ответил - все в порядке, можно начинать с ним генерацию DH. Если же источник не отвечает (в случае с DoS-атакой так и происходит, эта техника напоминает TCP SYN flood), то VPN-шлюз просто забывает о нем. Без этого механизма при каждом запросе от кого угодно VPN-шлюз бы пытался сгенерировать DH-ключ (что достаточно ресурсоемкий процесс) и вскоре бы столкнулся с проблемами. В итоге за счет того, что все операции теперь требуют подтверждения от другой стороны соединения, на атакуемом устройстве нельзя создать большое количество полуоткрытых сессий.

Выходим на рубеж

Наконец-то разобравшись с особенностями работы IPsec и его компонентов, можно переходить к главному - к практическим атакам. Топология будет достаточно простой и в то же время приближенной к реальности (см. рис. 3).


Первым делом нужно определить наличие IPsec VPN шлюза. Сделать это можно, проведя сканирование портов, но здесь есть небольшая особенность. ISAKMP использует протокол UDP, порт 500, а между тем дефолтное сканирование с помощью Nmap затрагивает только TCP-порты. И в результате будет сообщение: All 1000 scanned ports on 37.59.0.253 are filtered .

Создается впечатление, что все порты фильтруются и как бы открытых портов нет. Но выполнив команду

Nmap -sU --top-ports=20 37.59.0.253 Starting Nmap 6.47 (http://nmap.org) at 2015-03-21 12:29 GMT Nmap scan report for 37.59.0.253 Host is up (0.066s latency). PORT STATE SERVICE 500/udp open isakmp

убеждаемся в том, что это не так и перед нами действительно VPN-устройство.

Атакуем первую фазу

Теперь нас будет интересовать первая фаза, aggressive-режим и аутентификация с использованием pre-shared key (PSK). В этом сценарии, как мы помним, VPN-устройство или отвечающая сторона отправляет хешированный PSK инициатору. Одна из самых известных утилит для тестирования протокола IKE - это ike-scan, она входит в состав дистрибутива Kali Linux. Ike-scan позволяет отправлять IKE сообщения с различными параметрами и, соответственно, декодить и парсить ответные пакеты. Пробуем прощупать целевое устройство:

Root@kali:~# ike-scan -M -A 37.59.0.253 0 returned handshake; 0 returned notify

Ключ -A указывает на то, что нужно использовать aggressive-режим, а -M говорит о том, что результаты следует выводить построчно (multiline), для более удобного чтения. Видно, что никакого результата не было получено. Причина состоит в том, что необходимо указать тот самый идентификатор, имя VPN-группы. Разумеется, утилита ike-scan позволяет задавать этот идентификатор в качестве одного из своих параметров. Но так как пока он нам неизвестен, возьмем произвольное значение, например 0000.

Root@kali:~# ike-scan -M -A --id=0000 37.59.0.253 37.59.0.253 Aggressive Mode Handshake returned

В этот раз видим, что ответ был получен (см. рис. 5) и нам было предоставлено довольно много полезной информации. Достаточно важная часть полученной информации - это transform-set. В нашем случае там указано, что «Enc=3DES Hash=SHA1 Group=2:modp1024 Auth=PSK».

Все эти параметры можно указывать и для утилиты ike-scan с помощью ключа --trans . Например --trans=5,2,1,2 будет говорить о том, что алгоритм шифрования 3DES, хеширование HMAC-SHA, метод аутентификации PSK и второй тип группы DH (1024-bit MODP). Посмотреть таблицы соответствия значений можно по этому адресу . Добавим еще один ключ (-P), для того чтобы вывести непосредственно пейлоад пакета, а точнее хеш PSK.

Root@kali:~# ike-scan -M -A --id=0000 37.59.0.253 -P

Преодолеваем первые сложности

Казалось бы, хеш получен и можно пробовать его брутить, но все не так просто. Когда-то очень давно, в 2005 году, на некоторых железках Сisco была уязвимость: эти устройства отдавали хеш, только если атакующий передавал корректное значение ID. Сейчас, естественно, встретить такое оборудование практически невозможно и хешированное значение присылается всегда, независимо от того, правильное значение ID отправил атакующий или нет. Очевидно, что брутить неправильный хеш бессмысленно. Поэтому первая задача - это определить корректное значение ID, чтобы получить правильный хеш. И в этом нам поможет недавно обнаруженная уязвимость. Дело в том, что существует небольшая разница между ответами во время начального обмена сообщениями. Если кратко, то при использовании правильного имени группы происходит четыре попытки продолжить установление VPN-соединения плюс два зашифрованных пакета второй фазы. В то время как в случае неправильного ID в ответ прилетает всего лишь два пакета. Как видим, разница достаточно существенная, поэтому компания SpiderLabs (автор не менее интересного инструмента Responder) разработала сначала PoC, а затем и утилиту IKEForce для эксплуатации этой уязвимости.

В чем сила IKE

Установить IKEForce в произвольный каталог можно, выполнив команду

Git clone https://github.com/SpiderLabs/ikeforce

Работает она в двух основных режимах - режиме вычисления -e (enumeration) и режиме брутфорса -b (bruteforce). До второго мы еще дойдем, когда будем смотреть атаки на второй фактор, а вот первым сейчас и займемся. Перед тем как начать непосредственно процесс определения ID, необходимо установить точное значение transform-set. Мы его уже определили ранее, поэтому будем указывать опцией -t 5 2 1 2 . В итоге выглядеть процесс нахождения ID будет следующим образом:

Python ikeforce.py 37.59.0.253 -e -w wordlists/group.txt -t 5 2 1 2

В результате достаточно быстро удалось получить корректное значение ID (рис. 7). Первый шаг пройден, можно двигаться дальше.

Получаем PSK

Теперь необходимо, используя правильное имя группы, сохранить PSK-хеш в файл, сделать это можно с помощью ike-scan:

Ike-scan -M -A --id=vpn 37.59.0.253 -Pkey.psk

И теперь, когда правильное значение ID было подобрано и удалось получить корректный хеш PSK, мы можем наконец-то начать офлайн-брутфорс. Вариантов такого брутфорса достаточно много - это и классическая утилита psk-crack, и John the Ripper (с jumbo-патчем), и даже oclHashcat, который, как известно, позволяет задействовать мощь GPU. Для простоты будем использовать psk-crack, который поддерживает как прямой брутфорс, так и атаку по словарю:

Psk-crack -d /usr/share/ike-scan/psk-crack-dictionary key.psk

Но даже успешно восстановить PSK (см. рис. 8) - это только половина дела. На этом этапе нужно вспомнить про то, что дальше нас ждет XAUTH и второй фактор IPsec VPN.

Расправляемся со вторым фактором IPsec

Итак, напомню, что XAUTH - это дополнительная защита, второй фактор аутентификации, и находится он на фазе 1.5. Вариантов XAUTH может быть несколько - это и проверка по протоколу RADIUS, и одноразовые пароли (OTP), и обычная локальная база пользователей. Мы остановимся на стандартной ситуации, когда для проверки второго фактора используется локальная база пользователей. До недавнего времени не существовало инструмента в публичном доступе для брутфорса XAUTH. Но с появлением IKEForce эта задача получила достойное решение. Запускается брутфорс XAUTH достаточно просто:

Python ikeforce.py 37.59.0.253 -b -i vpn -k cisco123 -u admin -w wordlists/passwd.txt -t 5 2 1 2 [+]Program started in XAUTH Brute Force Mode [+]Single user provided - brute forcing passwords for user: admin [*]XAUTH Authentication Successful! Username: admin Password: cisco

При этом указываются все найденные ранее значения: ID (ключ -i), восстановленный PSK (ключ -k) и предполагаемый логин (ключ -u). IKEForce поддерживает как грубый перебор логина, так и перебор по списку логинов, который может быть задан параметром -U . На случай возможных блокировок подбора есть опция -s , позволяющая снизить скорость брутфорса. К слову, в комплекте с утилитой идут несколько неплохих словарей, особенно полезных для установления значения параметра ID.

Входим во внутреннюю сеть

Теперь, когда у нас есть все данные, остается последний шаг - собственно проникновение в локальную сеть. Для этого нам понадобится какой-нибудь VPN-клиент, которых великое множество. Но в случае Kali можно без проблем воспользоваться уже предустановленным - VPNC. Для того чтобы он заработал, нужно подкорректировать один конфигурационный файл - /etc/vpnc/vpn.conf . Если его нет, то нужно создать и заполнить ряд очевидных параметров:

IPSec gateway 37.59.0.253 IPSec ID vpn IPSec secret cisco123 IKE Authmode psk Xauth Username admin Xauth password cisco

Здесь мы видим, что были использованы абсолютно все найденные на предыдущих шагах данные - значение ID, PSK, логин и пароль второго фактора. После чего само подключение происходит одной командой:

Root@kali:~# vpnc vpn

Отключение тоже достаточно простое:

Root@kali:~# vpnc-disconnect

Проверить работоспособность подключения можно, используя команду ifconfig tun0 .

Как построить надежную защиту

Защита от рассмотренных сегодня атак должна быть комплексной: нужно вовремя устанавливать патчи, использовать стойкие pre-shared ключи, которые по возможности вовсе должны быть заменены на цифровые сертификаты. Парольная политика и другие очевидные элементы ИБ также играют свою немаловажную роль в деле обеспечения безопасности. Нельзя не отметить и тот факт, что ситуация постепенно меняется, и со временем останется только IKEv2.

Что в итоге

Мы рассмотрели процесс аудита RA IPsec VPN во всех подробностях. Да, безусловно, задача эта далеко не тривиальна. Нужно проделать немало шагов, и на каждом из них могут поджидать трудности, но зато в случае успеха результат более чем впечатляющий. Получение доступа к внутренним ресурсам сети открывает широчайший простор для дальнейших действий. Поэтому тем, кто ответствен за защиту сетевого периметра, необходимо не рассчитывать на готовые дефолтные шаблоны, а тщательно продумывать каждый слой безопасности. Ну а для тех, кто проводит пентесты, обнаруженный пятисотый порт UDP - это повод провести глубокий анализ защищенности IPsec VPN и, возможно, получить неплохие результаты.

(The Internet Key Exchange (IKE)) - Обмен ключами.

  • RFC 2410 (The NULL Encryption Algorithm and Its Use With IPsec) - Нулевой алгоритм шифрования и его использование.
  • RFC 2411 (IP Security Document Roadmap) - Дальнейшее развитие стандарта.
  • RFC 2412 (The OAKLEY Key Determination Protocol) - Проверка соответствия ключа.
  • Архитектура IPsec

    Протоколы IPsec, в отличие от других хорошо известных протоколов SSL и TLS , работают на сетевом уровне (уровень 3 модели OSI). Это делает IPsec более гибким, так что он может использоваться для защиты любых протоколов, базирующихся на TCP и UDP . IPsec может использоваться для обеспечения безопасности между двумя IP-узлами , между двумя шлюзами безопасности или между IP-узлом и шлюзом безопасности. Протокол является "надстройкой" над IP-протоколом, и обрабатывает сформированные IP-пакеты описанным ниже способом. IPsec может обеспечивать целостность и/или конфиденциальность данных передаваемых по сети.

    IPsec использует следующие протоколы для выполнения различных функций:

    • Authentication Header (АН) обеспечивает целостность виртуального соединения (передаваемых данных), аутентификацию источника информации и дополнительную функцию по предотвращению повторной передачи пакетов
    • Encapsulating Security Payload (ESP) может обеспечить конфиденциальность (шифрование) передаваемой информации, ограничение потока конфиденциального трафика. Кроме этого, он может обеспечить целостность виртуального соединения (передаваемых данных), аутентификацию источника информации и дополнительную функцию по предотвращению повторной передачи пакетов (Всякий раз, когда применяется ESP, в обязательном порядке должен использоваться тот или иной набор данных услуг по обеспечению безопасности)
    • Security Association (SA) обеспечивают связку алгоритмов и данных, которые предоставляют параметры, необходимые для работы AH и/или ESP. Internet Security Association and Key Management Protocol (ISAKMP) обеспечивает основу для аутентификации и обмена ключами, проверки подлинности ключей.

    Security Association

    Концепция "Защищенного виртуального соединения" (SA, "Security Association") является фундаментальной в архитектуре IPsec. SA представляет собой симплексное соединение , которое формируется для транспортирования по нему соответствующего трафика. При реализации услуг безопасности формируется SA на основе использования протоколов AH или ESP (либо обоих одновременно). SA определен в соответствии с концепцией межтерминального соединения (point-to-point) и может функционировать в двух режимах: транспортный режим (РТР) и режим тунелирования (РТУ). Транспортный режим реализуется при SA между двумя IP-узлами. В режиме туннелирования SA формирует IP-туннель .

    Все SA хранятся в базе данных SADB (Security Associations Database) IPsec-модуля. Каждое SA имеет уникальный маркер, состоящий из трех элементов:

    • индекса параметра безопасности (SPI)
    • IP-адреса назначения
    • идентификатора протокола безопасности (ESP или AH)

    IPsec-модуль, имея эти три параметра, может отыскать в SADB запись о конкретном SA. В список компонентов SA входят:

    Последовательный номер 32-битовое значение, которое используется для формирования поля Sequence Number в заголовках АН и ESP. Переполнение счетчика порядкового номера Флаг, который сигнализирует о переполнении счетчика последовательного номера. Окно для подавления атак воспроизведения Используется для определения повторной передачи пакетов. Если значение в поле Sequence Number не попадает в заданный диапазон, то пакет уничтожается. Информация AH используемый алгоритм аутентификации, необходимые ключи, время жизни ключей и другие параметры. Информация ESP алгоритмы шифрования и аутентификации, необходимые ключи, параметры инициализации (например, IV), время жизни ключей и другие параметры Режим работы IPsec туннельный или транспортный MTU Максимальный размер пакета, который можно передать по виртуальному каналу без фрагментации.

    Так как защищенные виртуальные соединения(SA) являются симплексными , то для организации дуплексного канала, как минимум, нужны два SA. Помимо этого, каждый протокол (ESP/AH) должен иметь свою собственную SA для каждого направления, то есть, связка AH+ESP требует наличия четырех SA. Все эти данные располагаются в SADB.

    • AH: алгоритм аутентификации.
    • AH: секретный ключ для аутентификации
    • ESP: алгоритм шифрования.
    • ESP: секретный ключ шифрования.
    • ESP: использование аутентификации (да/нет).
    • Параметры для обмена ключами
    • Ограничения маршрутизации
    • IP политика фильтрации

    Помимо базы данных SADB, реализации IPsec поддерживают базу данных SPD (Security Policy Database- База данных политик безопасности). Запись в SPD состоит из набора значений полей IP-заголовка и полей заголовка протокола верхнего уровня. Эти поля называются селекторами. Селекторы используются для фильтрации исходящих пакетов, с целью поставить каждый пакет в соответствие с определенным SA. Когда формируется пакет, сравниваются значения соответствующих полей в пакете (селекторные поля) с теми, которые содержатся SPD. Находятся соответствующие SA. Затем определяется SA (в случае, если оно имеется) для пакета и сопряженный с ней индекс параметров безопасности(SPI). После чего выполняются операции IPsec(операции протокола AH или ESP).

    Примеры селекторов, которые содержатся в SPD:

    • IP-адрес места назначения
    • IP-адрес отправителя
    • Протокол IPsec (AH, ESP или AH+ESP)
    • Порты отправителя и получателя

    Authentication Header

    Authentication Header format
    Offsets Octet 16 0 1 2 3
    Octet 16 Bit 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    0 0 Next Header Payload Len Reserved
    4 32
    8 64 Sequence Number
    C 96 Integrity Check Value (ICV)
    Next Header (8 bits) Тип заголовка протокола, идущего после заголовка AH. По этому полю приемный IP-sec модуль узнает о защищаемом протоколе верхнего уровня. Значения этого поля для разных протоколов можно посмотреть в RFC 1700 . Payload Len (8 bits) Это поле определяет общий размер АН-заголовка в 32-битовых словах, минус 2. Несмотря на это, при использовании IPv6 длина заголовка должна быть кратна 8 байтам. Reserved (16 bits) Зарезервировано. Заполняется нулями. Security Parameters Index (32 bits) Индекс параметров безопасности. Значение этого поля вместе с IP-адресом получателя и протоколом безопасности (АН-протокол), однозначно определяет защищенное виртуальное соединение(SA) для данного пакета. Диапазон значений SPI 1...255 зарезервирован IANA. Sequence Number (32 bits) Последовательный номер. Служит для защиты от повторной передачи. Поле содержит монотонно возрастающее значение параметра. Несмотря на то, что получатель может отказаться от услуги по защите от повторной передачи пакетов, оно является обязательным и всегда присутствует в AH-заголовке. Передающий IPsec-модуль всегда использует это поле, но получатель может его и не обрабатывать. Integrity Check Value

    Протокол AH используется для аутентификации, то есть для подтверждения того, что мы связываемся именно с тем, с кем предполагаем, и что данные, которые мы получаем, не искажены при передаче.

    Обработка выходных IP-пакетов

    Если передающий IPsec-модуль определяет, что пакет связан с SA, которое предполагает AH-обработку, то он начинает обработку. В зависимости от режима (транспортный или режим туннелирования) он по-разному вставляет AH-заголовок в IP-пакет. В транспортном режиме AH-заголовок располагается после заголовка протокола IP и перед заголовками протоколов верхнего уровня (Обычно, TCP или UDP). В режиме туннелирования весь исходный IP-пакет обрамляется сначала заголовком AH, затем заголовком IP-протокола. Такой заголовок называется внешним, а заголовок исходного IP-пакета- внутренним. После этого передающий IPsec-модуль должен сгенерировать последовательный номер и записать его в поле Sequence Number . При установлении SA последовательный номер устанавливается в 0, и перед отправкой каждого IPsec-пакета увеличивается на единицу. Кроме того, происходит проверка- не зациклился ли счетчик. Если он достиг своего максимального значения, то он снова устанавливается в 0. Если используется услуга по предотвращению повторной передачи, то при достижении счетчика своего максимального значения, передающий IPsec-модуль переустанавливает SA. Таким образом обеспечивается защита от повторной посылки пакета - приемный IPsec-модуль будет проверять поле Sequence Number , и игнорировать повторно приходящие пакеты. Далее происходит вычисление контрольной суммы ICV. Надо заметить, что здесь контрольная сумма вычисляется с применением секретного ключа, без которого злоумышленник сможет заново вычислить хэш, но не зная ключа, не сможет сформировать правильную контрольную сумму. Конкретные алгоритмы, использующиеся для вычисления ICV, можно узнать из RFC 4305 . В настоящее время могут применяться, например, алгоритмы HMAC-SHA1-96 или AES-XCBC-MAC-96. Протокол АН вычисляет контрольную сумму(ICV) по следующим полям IPsec-пакета:

    • поля IP-заголовка, которые не были подвержены изменениям в процессе транслирования, или определены как наиболее важные
    • АН-заголовок (Поля: "Next Header", "Payload Len, "Reserved", "SPI", "Sequence Number", "Integrity Check Value". Поле "Integrity Check Value" устанавливается в 0 при вычислении ICV
    • данные протокола верхнего уровня
    Если поле может изменяться в процессе транспортировки, то его значение устанавливается в 0 перед вычислением ICV. Исключения составляют поля, которые могут изменяться, но значение которых можно предугадать при приеме. При вычислении ICV они не заполняются нулями. Примером изменяемого поля может служить поле контрольной суммы, примером изменяемого, но предопределенного может являться IP-адрес получателя. Более подробное описание того, какие поля как учитываются при вычислении ICV, можно найти в стандарте RFC 2402 .

    Обработка входных IP-пакетов

    После получения пакета, содержащего сообщение АН-протокола, приемный IPsec-модуль ищет соответствующее защищенное виртуальное соединение(SA) SADB (Security Associations Database), используя IP-адрес получателя, протокол безопасности (АН) и индекс SPI. Если соответствующее SA не найдено, пакет уничтожается. Найденное защищенное виртуальное соединение(SA) указывает на то, используется ли услуга по предотвращению повторной передачи пакетов, т.е. на необходимость проверки поля Sequence Number . Если услуга используется, то поле проверяется. Для этого используется метод скользящего окна. Приемный IPsec-модуль формирует окно с шириной W. Левый край окна соответствует минимальному последовательному номеру(Sequence Number ) N правильно принятого пакета. Пакет с полем Sequence Number , в котором содержится значение, начиная от N+1 и заканчивая N+W, принимается корректно. Если полученный пакет оказывается по левую границу окна- он уничтожается. Затем приемный IPsec-модуль вычисляет ICV по соответствующим полям принятого пакета, используя алгоритм аутентификации, который он узнает из записи об SA, и сравнивает полученный результат со значением ICV, расположенным в поле "Integrity Check Value". Если вычисленное значение ICV совпало с принятым, то пришедший пакет считается действительным и принимается для дальнейшей IP-обработки. Если проверка дала отрицательный результат, то приемный пакет уничтожается.

    Encapsulating Security Payload format
    Offsets Octet 16 0 1 2 3
    Octet 16 Bit 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    0 0 Security Parameters Index (SPI)
    4 32 Sequence Number
    8 64 Payload data
    Padding (0-255 octets)
    Pad Length Next Header
    Integrity Check Value (ICV)
    Security Parameters Index (32 bits) Индекс параметров безопасности. Значение этого поля вместе с IP-адресом получателя и протоколом безопасности(АН-протокол), однозначно определяет защищенное виртуальное соединение(SA) для данного пакета. Диапазон значений SPI 1...255 зарезервирован IANA для последующего использования. Sequence Number (32 bits) Последовательный номер. Служит для защиты от повторной передачи. Поле содержит монотонно возрастающее значение параметра. Несмотря на то, что получатель может и отказаться от услуги по защите от повторной передачи пакетов, оно всегда присутствует в AH-заголовке. Отправитель(передающий IPsec-модуль) должен всегда использовать это поле, но получатель может и не нуждаться в его обработке. Payload data (variable) Это поле содержит данные в соответствии с полем "Next Header". Это поле является обязательным и состоит из целого числа байтов. Если алгоритм, который используется для шифрования этого поля, требует данных для синхронизации криптопроцессов (например, вектор инициализации - "Initialization Vector"), то это поле может содержать эти данные в явном виде. Padding (0-255 octets) Дополнение. Необходимо, например, для алгоритмов, которые требуют, чтобы открытый текст был кратен некоторому числу байтов), например, размеру блока для блочного шифра. Pad Length (8 bits) Размер дополнения(в байтах). Next Header (8 bits) Это поле определяет тип данных, содержащихся в поле "Payload data". Integrity Check Value Контрольная сумма. Должна быть кратна 8-байтам для IPv6, и 4-байтам для IPv4.

    Обработка выходных IPsec-пакетов

    Если передающий IPsec-модуль определяет, что пакет связан с SA, которое предполагает ESP-обработку, то он начинает обработку. В зависимости от режима(транспортный или режим туннелирования) исходный IP-пакет обрабатывается по-разному. В транспортном режиме передающий IPsec-модуль осуществляет процедуру обрамления(инкапсуляции) протокола верхнего уровня(например, TCP или UDP), используя для этого ESP-заголовок и ESP-концевик, не затрагивая при этом заголовок исходного IP-пакета. В режиме туннелирования IP-пакет обрамляется ESP-заголовком и ESP-концевиком, после чего обрамляется внешним IP-заголовком. Далее производится шифрование- в транспортном режиме шифруется только сообщение протокола выше лежащего уровня (т.е. все, что находилось после IP-заголовка в исходном пакете), в режиме туннелирования- весь исходный IP-пакет. Передающий IPsec-модуль из записи о SA определяет алгоритм шифрования и секретный ключ. Стандарты IPsec разрешают использование алгоритмов шифрования triple-DES, AES и Blowfish. Так как размер открытого текста должен быть кратен определенному числу байт, например, размеру блока для блочных алгоритмов, перед шифрованием производится еще и необходимое дополнение шифруемого сообщения. Защифрованное сообщение помещается в поле Payload Data . В поле Pad Length помещается длина дополнения. Затем, как и в AH, вычисляется Sequence Number . После чего считается контрольная сумма(ICV). Контрольная сумма, в отличие от протокола AH, где при ее вычислении учитываются также и некоторые поля IP-заголовка, в ESP вычисляется только по полям ESP-пакета за вычетом поля ICV. Перед вычислением контрольной суммы оно заполняется нулями. Алгоритм вычисления ICV, как и в протоколе AH, передающий IPsec-модуль узнает из записи об SA, с которым связан обрабатываемый пакет.

    Обработка входных IPsec-пакетов

    После получения пакета, содержащего сообщение ESP-протокола, приемный IPsec-модуль ищет соответствующее защищенное виртуальное соединение(SA) в SADB (Security Associations Database), используя IP-адрес получателя, протокол безопасности (ESP) и индекс SPI. Если соответствующее SA не найдено, пакет уничтожается. Найденное защищенное виртуальное соединение(SA) указывает на то, используется ли услуга по предотвращению повторной передачи пакетов, т.е. на необходимость проверки поля Sequence Number. Если услуга используется, то поле проверяется. Для этого, так же как и в AH, используется метод скользящего окна. Приемный IPsec-модуль формирует окно с шириной W. Левый край окна соответствует минимальному последовательному номеру(Sequence Number) N правильно принятого пакета. Пакет с полем Sequence Number, в котором содержится значение, начиная от N+1 и заканчивая N+W, принимается корректно. Если полученный пакет оказывается по левую границу окна- он уничтожается. Затем, если используется услуга аутентификации, приемный IPsec-модуль вычисляет ICV по соответствующим полям принятого пакета, используя алгоритм аутентификации, который он узнает из записи об SA, и сравнивает полученный результат со значением ICV, расположенным в поле "Integrity Check Value". Если вычисленное значение ICV совпало с принятым, то пришедший пакет считается действительным. Если проверка дала отрицательный результат, то приемный пакет уничтожается. Далее производится расшифрование пакета. Приемный IPsec-модуль узнает из записи об SA, какой алгоритм шифрования используется и секретный ключ. Надо заметить, что проверка контрольной суммы и процедура расшифрования могут проводиться не только последовательно, но и параллельно. В последнем случае процедура проверки контрольной суммы должна закончиться раньше процедуры расшифрования, и если проверка ICV провалилась, процедура расшифрования также должна прекратиться. Это позволяет быстрее выявлять испорченные пакеты, что, в свою очередь, повышает уровень защиты от атак типа "отказ в обслуживании"(DOS-атаки). Далее расшифрованное сообщение в соответствии с полем Next Header передается для дальнейшей обработки.

    Использование

    Протокол IPsec используется, в основном, для организации VPN-туннелей . В этом случае протоколы ESP и AH работают в режиме туннелирования. Кроме того, настраивая политики безопасности определенным образом, протокол можно использовать для создания межсетевого экрана. Смысл межсетевого экрана заключается в том, что он контролирует и фильтрует проходящие через него пакеты в соответствии с заданными правилами. Устанавливается набор правил, и экран просматривает все проходящие через него пакеты. Если передаваемые пакеты попадают под действие этих правил, межсетевой экран обрабатывает их соответствующим образом. Например, он может отклонять определенные пакеты, тем самым прекращая небезопасные соединения. Настроив политику безопасности соответствующим образом, можно, например, запретить интернет-трафик. Для этого достаточно запретить отсылку пакетов, в которые вкладываются сообщения протоколов HTTP и HTTPS . IPsec можно применять и для защиты серверов - для этого отбрасываются все пакеты, кроме пакетов, необходимых для корректного выполнения функций сервера. Например, для Web-сервера можно блокировать весь трафик, за исключением соединений через 80-й порт протокола TCP, или через порт TCP 443 в случаях, когда применяется HTTPS .

    См. также

    Ссылки

    • Описание конфигурирования IPSec (cisco.com) (англ.)

    0 В этой статье предлагается обзор средств IPSEC (IP Security - система защиты на уровне IP) и соответствующих протоколов IPSec, доступных в продуктах Cisco и используемых для создания виртуальных частных сетей (VPN). В данной статье мы определим, что такое IPSEC, а также какие протоколы и алгоритмы защиты лежат в основе IPSEC.

    Введение

    IP Security - это комплект протоколов, касающихся вопросов шифрования, аутентификации и обеспечения защиты при транспортировке IP-пакетов; в его состав сейчас входят почти 20 предложений по стандартам и 18 RFC.

    Продукты Cisco для поддержки VPN используют набор протоколов IPSec, являющийся на сегодня промышленным стандартом обеспечения широких возможностей VPN. IPSec предлагает механизм защищенной передачи данных в IP-сетях, обеспечивая конфиденци¬альность, целостность и достоверность данных, передаваемых через незащищенные сети типа Internet. IPSec обеспечивает следующие возможности VPN в сетях Cisco:

    • Конфиденциальность данных . Отправитель данных IPSec имеет возможность шифровать пакеты перед тем, как передавать их по сети.
    • Целостность данных . Получатель данных IPSec имеет возможность аутентифицировать сообщающиеся с ним стороны (устройства или программное обеспе¬чение, в которых начинаются и заканчиваются туннели IPSec) и пакеты IPSec, посылаемые этими сторонами, чтобы быть уверенным в том, что данные не были изменены в пути.
    • Аутентификация источника данных . Получатель данных IPSec имеет возмож¬ность аутентифицировать источник получаемых пакетов IPSec. Этот сервис за¬висит от сервиса целостности данных.
    • Защита от воспроизведения . Получатель данных IPSec может обнаруживать и от¬вергать воспроизведенные пакеты, не допуская их фальсификации и проведе¬ния атак внедрения посредника.

    IPSec представляет собой основанный на стандартах набор протоколов и алгоритмов защиты. Технология IPSec и связанные с ней протоколы защиты соответствуют открытым стандартам, которые поддерживаются группой IETF (Internet Engineering Task Force - проблемная группа проектирования Internet) и описаны в спецификациях RFC и проектах IETF. IPSec действует на сетевом уровне, обеспечивая защиту и аутентификацию пакетов IP, пересылаемых между устройствами (сторонами) IPSec - такими как маршрутизаторы Cisco, брандмауэры PIX Firewall, клиенты и концентраторы Cisco VPN, а также многие другие продукты, поддерживающие IPSec. Средства поддержки IPSec допускают масштабирование от самых малых до очень больших сетей.

    Ассоциации защиты (Security Association ,SA)

    IPSec предлагает стандартный способ аутентификации и шифрования соединений между сообщающимися сторонами. Чтобы обеспечить защиту связей, средства IPSec используют стандартные алгоритмы (т.е. математические формулы) шифрования и аутентификации, называемые преобразованиями. В IPSec используются открытые стандарты согласования ключей шифрования и управления соединениями, что обеспечивает возможность взаимодействия между сторонами. Технология IPSec предлагает методы, позволяющие сторонам IPSec "договориться" о согласованном использовании сервисов. Чтобы указать согласуемые параметры, в IPSec используются ассоциации защиты.

    Ассоциация защиты (Security Association - SA) представляет собой согласованную политику или способ обработки данных, обмен которыми предполагается между двумя устройствами сообщающихся сторон. Одной из составляющих такой политики может быть алгоритм, используемый для шифрования данных. Обе стороны могут ис¬пользовать один и тот же алгоритм как для шифрования, так и для дешифрования. Действующие параметры SA сохраняются в базе данных ассоциаций защиты (Security Association Database - SAD) обеих сторон.

    Два компьютера на каждой стороне SA хранят режим, протокол, алгоритмы и ключи, используемые в SA. Каждый SA используется только в одном направлении. Для двунаправленной связи требуется два SA. Каждый SA реализует один режим и протокол; таким образом, если для одного пакета необходимо использовать два протокола (как например AH и ESP), то требуется два SA.

    Протокол IKE (Internet Key Exchange - обмен Internet-ключами) является гибридным протоколом, обеспечивающим специальный сервис для IPSec, а именно аутентификацию сторон IPSec, согласование параметров ассоциаций защиты IKE и IPSec, а также выбор ключей для алгоритмов шифрования, используемых в рамках IPSec. Протокол IKE опира¬ется на протоколы ISAKMP (Internet Security Association and Key Management Protocol - протокол управления ассоциациями и ключами защиты в сети Internet) и Oakley, которые применяются для управления процессом создания и обработки ключей шифрования, используемых в преобразованиях IPSec. Протокол IKE применяется также для формирования ассоциаций защиты между потенциальными сторонами IPSec.
    Как IKE, так и IPSec используют ассоциации зашиты, чтобы указать параметры связи.
    IKE поддерживает набор различных примитивных функций для использования в протоколах. Среди них можно выделить хэш-функцию и псевдослучайную функцию (PRF).

    Хэш-функция – это функция, устойчивая к коллизиям. Под устойчивостью к коллизиям понимается тот факт, что невозможно найти два разных сообщения m1 и m2, таких, что

    H(m1)=H(m2), где H – хэш функция.

    Что касается псеводслучайных функций, то в настоящее время вместо специальных PRF используется хэш функция в конструкции HMAC (HMAC - механизм аутентификации сообщений с использованием хэш функций). Для определения HMAC нам понадобится криптографическая хэш функция (обозначим её как H) и секретный ключ K. Мы предполагаем, что H является хэш функцией, где данные хэшируются с помощью процедуры сжатия, последовательно применяемой к последовательности блоков данных. Мы обозначим за B длину таких блоков в байтах, а длину блоков, полученных в результате хэширования - как L (L
    ipad = байт 0x36, повторённый B раз;
    opad = байт 0x5C, повторённый B раз.

    Для вычисления HMAC от данных "text" необходимо выполнить следующую операцию:

    H(K XOR opad, H(K XOR ipad, text))

    Из описания следует, что IKE использует для аутентификации сторон HASH величины. Отметим, что под HASH в данном случае подразумевается исключительно название Payload в ISAKMP, и это название не имеет ничего общего со своим содержимым

    Инфраструктура IPSec

    Сети VPN на основе IPSec могут быть построены с помощью самых разных устройств Cisco - маршрутизаторов Cisco, брандмауэров CiscoSecure PIX Firewall, программного обеспечения клиента CiscoSecure VPN и концентраторов Cisco VPN серий 3000 и 5000. Маршрутизаторы Cisco имеют встроенную поддержку VPN с соответствующими богатыми возможностями программного обеспечения Cisco IOS, что уменьшает сложность сетевых решений и снижает общую стоимость VPN при возможности построения многоуровневой защиты предоставляемых сервисов. Брандмауэр PIX Firewall является высокопроизводительным сетевым устройством, которое может обслуживать конечные точки туннелей, обеспечивая им высокую пропускную способность и прекрасные функциональные возможности брандмауэра. Программное обеспечение клиента CiscoSecure VPN поддерживает самые строгие требования VPN удаленного доступа для операций электронной коммерции, а также приложений мо¬бильного доступа, предлагая законченную реализацию стандартов IPSec и обеспечивая надежное взаимодействие маршрутизаторов Cisco и брандмауэров PIX Firewall.

    Как работает IPSec


    IPSec опирается на ряд технологических решений и методов шифрования, но действие IPSec в общем можно представить в виде следующих главных шагов:
    • Шаг 1. Начало процесса IPSec. Трафик, которому требуется шифрование в соответствии с политикой защиты IPSec, согласованной сторонами IPSec, начинает IКЕ-процесс.
    • Шаг 2. Первая фаза IKE . IKE-процесс выполняет аутентификацию сторон IPSec и ведет переговоры о параметрах ассоциаций защиты IKE, в результате чего создается защищенный канал для ведения переговоров о параметрах ассоциаций защиты IPSec в ходе второй фазы IKE.
    • Шаг 3. Вторая фаза IKE . IKE-процесс ведет переговоры о параметрах ассоциации защиты IPSec и устанавливает соответствующие ассоциации защиты IPSec для устройств сообщающихся сторон.
    • Шаг 4. Передача данных . Происходит обмен данными между сообщающимися сторонами IPSec, который основывается на параметрах IPSec и ключах, хранимых в базе данных ассоциаций защиты.
    • Шаг 5. Завершение работы туннеля IPSec . Ассоциации защиты IPSec завершают свою работу либо в результате их удаления, либо по причине превышения предельного времени их существования.
    В следующих разделах указанные шаги будут описаны подробнее.

    Перед тем как приступить к подробному ознакомлению с протоколом IPsec и его настройкой, следует выявить его возможности и преимущества перед другими доступными протоколами защиты данных.

    IPsec существует в виде расширения протокола IPv4 и является неотъемлемой частью IPv6. Рассматриваемый протокол обеспечивает безопасность IP-уровня сети (3 уровень в модели ISO/OSI, рис. 1), что позволяет обеспечить высокий уровень защиты, прозрачный для большинства приложений, служб и протоколов верхнего уровня, использующих в качестве транспорта протокол IP. IPSec не требует внесения изменений в существующие приложения или операционные системы.

    Рис. 1, Модель ISO/OSI.

    Внедрение безопасности на данном уровне обеспечивает защиту для всех протоколов семейства TCP/IP, начиная с уровня IP, таких как TCP, UDP, ICMP, а также множества других.

    Другие службы безопасности, работающие выше третьего уровня, например протокол SSL (Secure Sockets Layer), защищают лишь конкретный прикладной сокет. Для защиты всех устанавливаемых соединений подобные протоколы требуют изменения всех служб и приложений для обеспечения ими поддержки, протокола, в то время как службы, действующие ниже третьего уровня, такие как аппаратное шифрование уровня связи, в состоянии защитить лишь конкретную связь, но не все связи на пути следования данных, что делает их применение в условиях интернет нецелесообразным.

    Использование протокола IPsec наиболее целесообразно для обеспечения безопасной связи между компьютерами либо сетями через другую масштабную сеть, безопасность которой невозможно контролировать. Одним из важных преимуществ протокола IPsec также является невысокая стоимость внедрения, так как в большинстве случаев не требуется установки нового оборудования или замены старого, а также то, что протокол является стандартным и открытым, и поставляется практически со всеми современными операционными системами.

    Одним из важных преимуществ протокола является дешевизна его использования. Он позволяет обезопасить данные и обеспечить проверку подлинности пользователей и данных в ранее незащищенной сети без дополнительных затрат на сетевое оборудование, так как сохраняется совместимость со всем ранее выпущенным оборудованием.

    Протокол IPsec обеспечивает высокий настраиваемый уровень безопасности с помощью служб, основанных на криптографии (хеширование – для защиты от повторений, обеспечения целостности данных и проверки их подлинности, и непосредственно шифрование, обеспечивающее конфиденциальность данных).

    Субпротоколы AH (Authentication Header) и ESP (Encapsulating Security Payload) могут использоваться как совместно для обеспечения наибольшего уровня безопасности, так и независимо друг от друга.

    Работа протокола возможна в двух режимах - транспортном и туннельном, обеспечивающих различный уровень безопасности и применимые в различных условиях.

    Транспортный режим имеет целью обезопасить соединения между конкретными компьютерами, как правило объединенных единой (локальной) сетью. При использовании транспортного режима обеспечивается защита полезных данных IP (например сегментов TCP), при этом IP-заголовок защищается от изменения, оставаясь доступным для чтения.

    В транспортном режиме протоколы AH и ESP имеют следующие функции и возможности:

      протокол AH обеспечивает проверку подлинности и целостность данных, а также отсутствие повторов (как заголовка IP, так и полезных данных), то есть защищает данные от целенаправленных изменений. При этом данные не шифруются, и остаются доступными для чтения. AH подписывает пакеты используя алгоритмы хеширования с ключами (MD5, а в более современных реализациях SHA1), при этом заголовок AH помещается между заголовком IP и полезными данными (как показано на рисунке 2). В заголовке AH подписывается весь IP-пакет, за исключением полей, подлежащих изменению в процессе передачи по сети (рисунок 3). Заголовок AH всегда расположен перед любыми другими заголовками, используемыми в Ipsec.

    Рис. 2, Размещение заголовка АН

    Рис. 3, Охват AH (транспортный режим)

      протокол ESP в транспортном режиме обеспечивает конфиденциальность полезных данных IP, но не заголовка IP. Кроме шифрования полезных данных IP, ESP обеспечивает проверку подлинности и целостности пакета, а точнее заголовка ESP, полезных данных IP и трейлера ESP (но не заголовка IP). Значение проверки целостности хранится в поле «трейлер проверки подлинности ESP». Заголовок ESP размещается перед полезными данными IP, а трейлер ESP и трейлер проверки подлинности ESP помещаются за полезными данными IP (рисунок 5).

    Рис. 4, Размещение заголовка и трейлеров ESP

    Рис. 5, Охват ESP (транспортный режим)

    Туннельный режим используется преимущественно совместно с VPN-туннелями, что позволяет защитить связь между двумя географически удаленными сетями, объединенными посредством сети интернет. Рассматриваемый режим обеспечивает защиту всего пакета IP, рассматривая его как полезные данные AH или ESP. При использовании этого режима весь пакет IP инкапсулируется в заголовок AH или ESP и дополнительный заголовок IP. IP-адреса внешнего заголовка IP указывают конечные точки туннеля, а IP-адреса инкапсулированного заголовка IP указывают исходную точку и точку назначения пакета. Благодаря этому обеспечивается защита всего IP-пакета, включая заголовок IP.

      AH в режиме туннеля подписывает пакет для сохранения целостности и инкапсулирует его в заголовки IP и AH (рисунок 6), при этом данные остаются доступными для чтения.

    Рис. 6, Охват AH (туннельный режим)

      ESP в туннельном режиме помещает исходный пакет целиком между заголовком ESP и трейлером проверки подлинности ESP, включая заголовок IP, и шифрует эти данные, создавая новый заголовок IP, как и AH, в котором в качестве адресов отправителя и получателя указываются IP адреса серверов туннеля (рисунок 7). Сервер туннеля на другой стороне расшифровывает пакет и, отбросив туннельный IP-заголовок и заголовки ESP, передает пакет получателю в своей интрасети. Весь процесс происходит совершенно прозрачно для конечных рабочих станций.

    Рис. 7, Охват ESP (туннельный режим)

    Туннельный режим протокола IPsec используется в тех случаях, когда требуется защитить данные (в том числе заголовки IP), передаваемые через общедоступную сеть. Примерами могут служить связи между удаленными подразделениями компании.

    Транспортный же режим служит для защиты данных преимущественно внутри одной сети, безопасность которой не может быть надежно обеспечена другими способами без значительных затрат, либо когда требуется высокий уровень безопасности, что достигается совместным использованием различных протоколов. В качестве примеров можно назвать беспроводные сети, а также кабельные сети, покрывающие большие территории.

    В зависимости от требуемого уровня безопасности, возможны различные конфигурации работы протокола IPsec. Например если требуется обеспечить лишь аутентификацию пользователей и проверку целостности и подлинности данных, то можно ограничится использованием AH, что существенно не повлияет на производительность сети и отдельных рабочих станций, даже при применении наиболее стойких алгоритмов хеш-функций, как будет показано ниже. В случае если передаваемые данные требуют их шифрования, то используется протокол ESP, что, в зависимости от применяемых криптографических алгоритмов и скорости передачи данных, может значительно сказаться на производительности рабочих станций, которые выполняют функции конечных точек туннеля или участвуют в сети, где применяется транспортный режим IPsec..

    Настройка

    Описание настройки VPN-туннелей, как и рассмотрение их свойств и возможностей, выходит за рамки данной статьи, поэтому ограничимся описанием процесса настройки транспортного режима IPsec.

    В Windows XP настройка IPsec выполняется посредством оснастки «Локальные параметры безопасности», запуск которой возможен из меню «Администрирование», «Панели управления», либо через команду «Выполнить» «secpol.msc». Возможно использование созданных по умолчанию политик, либо создание новой.

    Для создания политики безопасности IP необходимо выделить из списка пункт «Политики безопасности IP» и в меню «Действие» выбрать «Создать политику безопасности IP».

    Рис. 8, Создание политики безопасности IP

    Откроется «Мастер политики IP-безопасности». Для продолжения следует нажать «Далее». В следующем окне нужно ввести имя новой политики, и нажать «Далее».

    Рис. 9, Имя политики IP

    В следующем окне «Мастер» предложит принять решение использовать ли правило по умолчанию. Использование этого правила можно отменить и после создания политики, если возникнет такая необходимость.

    Рис. 10, Правило по умолчанию

    После этого «Мастер» предлагает выбрать способ проверки подлинности пользователя. IPsec поддерживает следующие способы: посредством протокола Kerberos (стандартный протокол аутентификации в доменах Windows 2000 и Windows 2003), с помощью сертификата пользователя, либо на основании строки защиты («пароля»). Если в вашей сети нет контроллеров домена и пользователи сети не обладают действительными сертификатами, остается только выбрать строку посложнее и держать ее в строгой тайне. Строка защиты на самом деле может состоять из нескольких строк.

    Рис. 11, Выбор способа аутентификации

    Создание политики практически закончено. Изменить свойства можно немедленно по завершении работы мастера (окно свойств откроется автоматически), либо позже, выделив нужную политику и выбрав из контекстного меня пункт «Свойства».

    Рис. 12, Завершение создания политики

    Теперь пришло время изменить свойства политики так, чтобы они удовлетворяли потребностям, а значит предстоит создать правила безопасности IP, фильтр и правила фильтра.

    Для создания правила безопасности необходимо открыть свойства созданной политики безопасности IP и на вкладке «Правила» нажать кнопку «Добавить», предварительно сняв флажок «Использовать мастер», как показано на рисунке 13.

    Рис.13, Создание правила безопасности IP

    На закладке «Параметры туннеля» не следует что-либо изменять если Вы не настраиваете IPsec в туннельном режиме. На закладке «Тип подключения» есть возможность выбрать для каких сетевых подключений будет применяться создаваемое правило – для всех подключений, только для локальных подключений или только для удаленных. Таким образом предусмотрена возможность создания различных правил для сетевых подключений с различной скоростью передачи данных, что позволяет для более медленных и, как правило, менее защищенных удаленных подключений установить другие параметры как аутентификации, так и проверки целостности и шифрования.

    Рис. 14, Тип подключения

    На закладке «Методы проверки подлинности» есть возможность добавить несколько методов проверки и изменить порядок их предпочтения, что позволяет более гибко настроить правило для связи с различными узлами, поддерживающими различные способы аутентификации.

    Рис. 15, Методы проверки подлинности

    После выбора типа подключений и методов проверки подлинности следует выбрать список фильтров IP и действие фильтра, либо создать новые. Для выбора либо создания фильтров IP следует перейти на закладку «Список фильтров IP»(рисунок 16).

    По умолчанию созданы следующие фильтры:

      Полный IP-трафик, который применяется ко всему IP-трафику, независимо от используемого протокола более высокого уровня;

      Полный ICMP-трафик, который применяется соотвественно ко всему ICMP-трафику.

    Рис. 16, Список фильтров IP.

    Для создания нового фильтра следует нажать кнопку «Добавить», после чего откроется окно «Список фильтров IP», где, после ввода имени списка фильтров и снятия галочки «Использовать мастер», следует нажать кнопку «Добавить»(рисунок 17).

    Рис. 17, Создание списка фильтров IP.

    Откроется окно «Свойства: Фильтр» (рисунок 18), где следует указать адреса источника и получателя пакетов, к которым будет применяться фильтр, а также, при необходимости, протокол и порты источника и получателя.

    Рис. 18, Параметры нового списка фильтров IP

    После выбора или создания списков фильтров, необходимо определить действие фильтра. Это можно сделать на закладке «Действие фильтра». Созданные по умолчанию действия:

      Разрешить, которое разрешает прохождение небезопасных пакетов (без использования IPsec),

      Требуется безопасность, что определяет разрыв связи с клиентами, не поддерживающими IPsec, а с клиентами, поддерживающими IPsec будет производиться обмен данными с применение проверки целостности ESP, но без AH и без шифрования данных.

      Последнее предустановленное действие – Запрос безопасности – предусматривает требование от клиентов безопасной связи, но при невыполнении этих требований небезопасная связь прервана не будет.

    Рис. 19, Действия фильтра

    Создать новое действие можно нажав на кнопку «Добавить», предварительно сняв флажок «Использовать мастер» (рисунок 19). На вкладке «Методы безопасности» открывшегося окна «Свойства: создание действия фильтра», следует указать нужно ли разрешить прохождение данных, заблокировать их либо согласовать безопасность(рисунок 20).

    Рис. 20, Пустой список возможных действий фильтра

    Если выбран пункт согласовать безопасность, можно добавить методы безопасности и изменить порядок их предпочтения. При добавлении методов безопасности следует выбрать, будет ли использоваться AH, ESP, либо настроить безопасность вручную, выбрав пункт «Настраиваемая безопасность». Только таким образом можно задействовать и AH и ESP. В параметрах настраиваемой безопасности устанавливаются требуемые протоколы (AH и ESP)(рисунок 21).

    Рис. 21, Создание действия фильтра

    Здесь также предоставлена возможность вручную выбрать алгоритмы проверки целостности и шифрования, а таже параметры смены ключей сеанса. По умолчания ключи изменяются каждый час либо через каждые 100Mb переданной информации (рисунок 22).

    Рис. 22, Параметры особого метода безопасности

    После выбора действий фильтров настройку политики безопасности IP можно считать завершенной. Если настройка производилась в Windows XP, как в этом примере, для транспортного режима IPsec, то такую же операцию следует произвести на каждом компьютере. Средства автоматизации в Windows Server позволяют централизовано развернуть политику IP на всех рабочих станциях домена. Вне домена автоматизация возможна лишь отчасти посредством сценариев командной строки (с помощью программы ipseccmd).

    Тестирование

    Тестирование производительности протокола IPsec имеет целью выявить уровень нагрузки на центральный процессор при передаче данных по сети с использованием различных криптографических алгоритмов.

    Тестирование производилось на компьютерах следующей конфигурации:

    Компьютер 1

    Компьютер 2

    Процессор

    AMD Athlon 64 3000+ Socket 754

    AMD Athlon XP 1700+ Socket А

    Материнская плата

    2*512 Mb Samsung PC 3200

    256 Mb Samsung PC 2700

    Жесткий диск

    Seagate ST3160023A

    Seagate ST380011A

    Сетевой адаптер

    Между двумя копьютерами передавался файл обьемом 701 Мб, с различными настройками IPsec, а также без использования рассматриваемого протокола.

    К сожалению, не было найдено более точных способов измерения загруженности процессора и времени передачи файла, чем часы и диспетчер задач Windows, поэтому, возможна некоторая погрешность в измерениях.

    Без использования IPsec, файл был передан за 86 с. При этом загруженность процессоров на обоих компьютерах была не высока, как показано на рисунках 23 и 24, а средняя скорость передачи данных достигла 65,21 Мбит/с.

    После этого IPsec был настроен описанным выше образом для обеспечения целостности передаваемых данных (субпротокол AH с использованием SHA-1).

    Время передачи данных возросло незначительно, до 91 с, а скорость незначительно упала, до 61,63 Мбит/с. При этом загрузка процессоров выросла не на много и изображена на рисунках 25 и 26.

    Следующий тестовый вариант настройки IPsec был таким: ESP без использования AH, с шифрованием при помощи DES и хешированием MD5. Значительных изменений в производительности в этой конфигурации по сравнению с предыдущими замечено не было.

    Файл передан за 93 с, скорость передачи составила 60,3 Мбит/с. Загрузка процессоров показана соответственно на рисунках 27 и 28. Следует заметить, что DES является устаревшим алгоритмом и не рекомендуется к использованию там, где защищаемые данные действительно имею большую ценность. В то же время стойкость этого алгоритма может быть значительно улучшена благодаря более частой смене ключа.

    При использовании более стойкого 3DES вместо DES в той же конфигурации (MD5), скорость передачи упала более чем в два раза, и составила 29,99 Мбит/с, а время соответственно 187 с. Графики загруженности процессоров практически не изменились (рисунки 29 и 30).

    При использовании ESP с 3DES и SHA1 время передачи выросло на 1с (до 188), а скорость упала до 29,83 Мбит/с. Приводить графики загруженности процессора нет смысла – они такие же как на рисунках 29 и 30.

    Используя совместно с ESP протокол AH в наиболее безопасной, а значит и наиболее ресурсоемкой конфигурации, доступной в Windows XP, получены следующие результаты: время передачи увеличилось до 212 с, скорость упала до 26,45 Мбит/с.

    Диаграмма 1, Время передачи файла и скорость в зависимости от используемых криптографических алгоритмов

    Как видно из результатов тестирования (диаграмма 1), ресурсоемкость IPsec невысока при использовании только лишь AH и при применении ESP с DES. В случае же использования 3DES производительность резко падает, но при низких скоростях передачи данных производительности даже устаревших процессоров будет достаточно. Там же, где требуется высокая скорость передачи данных, может оказаться достаточным использование DES с частой сменой ключа. Характерно, что загрузка двух процессоров различного класса не слишком отличалась.



    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    NexxDigital - компьютеры и операционные системы