NexxDigital - компьютеры и операционные системы

Наиболее удобным для аналитического описания является так называемый экспоненциальный (или показательный) закон надежности, который выражается формулой

где - постоянный параметр.

График экспоненциального закона надежности показан на рис. 7.10. Для этого закона функция распределения времени безотказной работы имеет вид

а плотность

Это есть уже известный нам показательный закон распределения, по которому распределено расстояние между соседними событиями в простейшем потоке с интенсивностью (см. § 4 гл. 4).

При рассмотрении вопросов надежности часто бывает удобно представлять себе дело так, словно на элемент действует простейший поток отказов с интенсивностью Я; элемент отказывает в момент, когда приходит первое событие этого потока.

Образ «потока отказов» приобретает реальный смысл, если отказавший элемент немедленно заменяется новым (восстанавливается).

Последовательность случайных моментов времени, в которые проис ходят отказы (рис. 7.11), представляет собой простейший поток событии, а интервалы между событиями - независимые случайные величины, распределенные по показательному закону (3,3),

Понятие «интенсивности отказов» может быть введено не только для экспоненциального, но и для любого другого закона надежности о плотностью вся разница будет в том, что при неэкспоненциальном законе интенсивность отказов Я будет уже не постоянной величиной, а переменной.

Интенсивностью (или иначе «опасностью») отказов называется отношение плотности распределения времени безотказной работы элемента к его надежности:

Поясним физический смысл этой характеристики. Пусть одновременно испытывается большое число N однородных элементов, каждый - до момента своего отказа. Обозначим - число элементов, оказавшихся исправными к моменту , как и и раньше, - число элементов, отказавших на малом участке времени На единицу времени придется среднее число отказов

Разделим эту величину не на общее число испытываемых элементов N, а на число исправных к моменту t элементов . Нетрудно убедиться, что при большом N это отношение будет приближенно равно интенсивности отказов

Действительно, при большом N

Но согласно формуле (2.6)

В работах по надежности приближенное выражение (3.5) часто рассматривают как определение интенсивности отказов, т. е. определяют ее как среднее число отказов в единицу времени, приходящееся на один работающий элемент.

Характеристике можно дать еще одно истолкование: это есть условная плотность вероятности отказа элемента в данный момент времени t, при условии, что до момента t он работал безотказно. Действительно, рассмотрим элемент вероятности - вероятность того, что за время элемент перейдет из состояния «работает» в состояние «не работает», при условии, что до момента t он работал. В самом деле, безусловная вероятность отказа элемента на участке равна Это - вероятность совмещения двух событий:

А - элемент работал исправно до момента

В - элемент отказал на участке времени По правилу умножения вероятностей:

Учитывая, что получим:

а величина есть не что иное, как условная плотность вероятности перехода из состояния «работает» в состояние «отказал» для момента t.

Если известна интенсивность отказов , то можно выразить через нее надежность Учитывая, что запишем формулу (3.4) в виде:

Интегрируя, получим:

Таким образом надежность выражается через интенсивность отказов.

В частном случае, когда , формула (3.6) дает:

т. е. уже известный нам экспоненциальный закон надежности.

Пользуясь образом «потока отказов», можно истолковать не только формулу (3.7), но и более общую формулу (3.6). Представим себе (совершенно условно!), что на элемент с произвольным законом надежности действует поток отказов с переменной интенсивностью Тогда формула (3.6) для выражает вероятность того, что на участке времени (0, t) не появится ни одного отказа.

Таким образом, как при экспоненциальном, так и при любом другом законе надежности работу элемента, начиная с момента включения можно представлять себе так, что на элемент действует пуассоновский поток отказов; для экспоненциального закона надежности это будет поток с постоянной интенсивностью , а для неэкспоненциального - с переменной интенсивностью

Заметим, что этот образ годится только в том случае, когда отказавший элемент не заменяется новым. Если, как мы это делали раньше, немедленно заменять отказавший элемент новым, поток отказов уже не будет пуассоновским. Действительно, интенсивность его будет зависеть не просто от времени t, протекшего с начала всего процесса, а и от времени , протекшего со случайного момента включения именно данного элемента; значит, поток событий имеет последействие и пуассоновским не является.

Если же на протяжении всего исследуемого процесса данный элемент не заменяется и может отказать не более одного раза, то при описании процесса, зависящего от его функционирования, можно пользоваться схемой марковского случайного процесса, но при переменной, а не постоянной интенсивности потока отказов.

Если неэкспоненциальный закон надежности сравнительно мало отличается от экспоненциального, то можно, в целях упрощения, приближенно заменить его экспоненциальным (рис. 7.12). Параметр этого закона выбирается так, чтобы сохранить неизменным математическое ожидание времени безотказной работы, равное, как мы знаем, площади, ограниченной кривой и осями координат. Для этого нужно положить параметр показательного закона равным

где - площадь, ограниченная кривой надежности

Таким образом, если мы хотим характеризовать надежность элемента некоторой средней интенсивностью отказов, нужно в качестве этой интенсивности взять величину, обратную среднему времени безотказной работы элемента.

Выше мы определяли величину t как площадь, ограниченную кривой Однако, если требуется знать только среднее время безотказной работы элемента, проще найти его непосредственно по статистическому материалу как среднее арифметическое всех наблюденных значений случайной величины Т - времени работы элемента до его отказа. Такой способ может быть применен и в случае, когда число опытов невелико и не позволяет достаточно точно построить кривую

Пример 1. Надежность элемента убывает со временем по линейному закону (рис. 7.13). Найти интенсивность отказов и среднее время безотказной работы элемента

Решение. По формуле (3.4) на участке ) имеем:

Согласно заданному закону надежности 4

Лекция № 3

Тема № 1. Показатели надежности ЭМС

Показатели надежности характеризуют такие важнейшие свойства систем, как безотказность , живучесть , отказоустойчивость , ремонтопригодность , сохраняемость , долговечность и являются количественной оценкой их технического состояния и среды, в которой они функционируют и эксплуатируются. Оценка показателей надежности сложных технических систем на различных этапах жизненного цикла используется для выбора структуры системы из множества альтернативных вариантов, назначения гарантийных сроков эксплуатации, выбора стратегии и тактики технического обслуживания, анализа последствий отказов элементов системы.

Аналитические методы оценки показателей надежности сложных технических систем управления и принятия решения базируются на положениях теории вероятности. В силу вероятностной природы отказов оценка показателей основана на использовании методов математической статистики. При этом статистический анализ проводится, как правило, в условиях априорной неопределенности относительно законов распределения случайных значений наработки системы, а также по выборкам ограниченного объема, содержащих данные о моментах отказа элементов системы при из испытаниях или в условиях эксплуатации.

Вероятность безотказной работы (ВБР) – это вероятность того, что при определенных условиях эксплуатации в заданном интервале времени не произойдет ни одного отказа. Вероятность P (t ) – функция, убывающая см. рис.1 причем,

ВБР по статистическим данным об отказах оценивается выражением

(1)

где – статистическая оценка ВБР; – число изделий в начале испытаний, при большом числе изделий статистическая оценка практически совпадает с вероятностью P (t ) ; –число отказавших изделий за время t .

Рисунок 1. Кривые вероятности безотказной работы и вероятности отказов

Вероятность отказа Q ( t ) – это вероятность того, что при определенных условиях эксплуатации в заданном интервале времени произойдет хотя бы один отказ. Отказ и безотказная работа – события противоположенные и несовместимые

(2)

Частота отказов a ( t ) – есть отношение отказавших изделий в единицу времени к первоначальному числу испытываемых изделий

(3)

где –число отказавших изделий в интервале времени Dt .

Частота отказов или плотность вероятности отказов может быть определена как производная по времени вероятности отказов

Знак (-) характеризует скорость снижения надежности во времени.

Средняя наработка до отказа – среднее значение продолжительности работы неремонтируемого устройства до первого отказа:

где – продолжительность работы (наработка) до отказа i -гo устройства; – число наблюдаемых устройств.

Пример. Наблюдения за эксплуатацией 10 электродвигателей выявили, что первый проработал до отказа 800 ч, второй – 1200 и далее соответственно; 900, 1400, 700, 950, 750, 1300, 850 и 1500 ч. Определить наработку двигателей до внезапного отказа,

Решение . По (5) имеем

Интенсивность отказов l ( t ) – условная плотность вероятности возникновения отказа, которая определяется как отношение числа отказавших изделий в единицу времени к среднему числу изделий, исправно работающих в данный отрезок времени

, (6)

где – число устройств, отказавших в период времени ; – число среднее число устройств, исправно работающих в период наблюдения; – период наблюдения.

Вероятность безотказной работы Р(t) через выразится

. (8)

Пример 1. При эксплуатации 100 трансформаторов в течение 10 лет произошло два отказа, причём каждый раз отказывал новый трансформатор. Определить интенсивность отказов трансформатора за период наблюдения.

Решение. По (6) имеем отк./год.

Пример2 . Изменение числа отказов BJI из-за производственной деятельности сторонних организаций по месяцам года представлено следующим образом:

Определить среднемесячную интенсивность отказов.

Решение. ; отк./ мес.

Ожидаемая расчетная интенсивность l = 7,0.

Средняя наработка на отказ – среднее значение наработки ремонтируемого устройства между отказами, определяемое как среднее арифметическое:

, (9)

где – наработка до первого, второго, n -го отказа; n – число отказов от момента начала эксплуатации до окончания наблюдения. Наработка на отказ, или среднее время безотказной работы, есть математическое ожидание :

. (10)

Пример. Трансформатор отказал, проработав около года. После устранения причины отказа он проработал еще три года и опять вышел из строя. Определить среднюю наработку трансформатора на отказ.

Решение . По (1.7) вычислим года.

Параметр потока отказов – среднее количество отказов ремонтируемого устройства в единицу времени, взятое для рассматриваемого момента времени:

(11)

где – число отказов i -го устройства по состоянию на рассматриваемые моменты времени – и t соответственно; N – число устройств; – рассматриваемый период работы, причём .

Отношение среднего числа отказов восстанавливаемого объекта за произвольно малую его наработку к значению этой наработки

Пример . Электротехническое устройство состоит из трех элементов. В течение первого года эксплуатации в первом элементе произошло два отказа, во втором – один, в третьем отказов не было. Определить параметр потока отказов.

Решение

Откуда по (1.8)

Среднее значение ресурса рассчитывают по данным эксплуатации или испытаний с использованием уже известного выражения для наработки:

.

Среднее время восстановления – среднее время вынужденного или регламентированного простоя, вызванного обнаружением и устранением одного отказа:

где – порядковый номер отказа; – среднее время обнаружения и устранения отказа.

Коэффициент готовности – вероятность того, что оборудование будет работоспособно в произвольно выбранный момент времени в промежутках между выполнениями планового технического обслуживания. При экспоненциальном законе распределения времени безотказной работы и времени восстановления коэффициент готовности

.

Коэффициент вынужденного простоя – это отношение времени вынужденного простоя к сумме времени исправной работы и вынужденных простоев.

Коэффициент технического использования – это отношение наработки оборудования в единицах времени за некоторый период эксплуатации к сумме этой наработки и времени всех простоев, вызванных, техническим обслуживанием и ремонтами за тот же период эксплуатации:

.

Кроме того [ГОСТ 27.002-83] определяет показатели долговечности , в терминах которых следует указывать вид действий после наступления предельного состояния объекта (например, средний ресурс до капитального ремонта; гамма-процентный ресурс до среднего ремонта и т.д.). Если предельное состояние обуславливает окончательное снятие объекта с эксплуатации, то показатели долговечности называются: полный средний ресурс (срок службы), полный гамма-процентный ресурс (срок службы), полный назначенный ресурс (срок службы).

Средний ресурс – математическое ожидание ресурса.

Гамма-процентный ресурс – наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью g, выраженной в процентах.

Назначенный ресурс – суммарная наработка объекта, при достижении которой применение по назначению должно быть прекращено.

Средний срок службы – математическое ожидание срока службы.

Гамма-процентный срок службы – календарная продолжительность от начала эксплуатации объекта, в течение которой он не достигнет предельного состояния с заданной вероятностью g, выраженной в процентах.

Назначенный срок службы – календарная продолжительность эксплуатации объекта, при достижении которой применение по назначению должно быть прекращено.

Показатели ремонтопригодности и сохраняемости определяются следующим образом.

Вероятность восстановления работоспособного состояния – это вероятность того, что время восстановления работоспособного состояния объекта не превысит заданного.

Среднее время восстановления работоспособного состо яния – это математическое ожидание времени восстановления работоспособного состояния.

Средний срок сохраняемости – это математическое ожидание срока сохраняемости.

Гамма-процентный срок сохраняемости – это срок сохраняемости, достигаемый объектом с заданной вероятностью , выраженной в процентах.

Среднее значение наработок изделий в партии до первого отказа называется средней наработкой до первого отказа. Этот термин применим как для ремонтируемых, так и для неремонтируемых изделий. Для неремонтируемых изделий вместо названного можно применять термин средняя наработка до отказа.

ГОСТом 13377 – 67 для неремонтируемых изделий введен еще один показатель надежности, называемый интенсивностью отказов.

Интенсивность отказов есть вероятность того, что неремонтируемое изделие, проработавшее безотказно до момента t, откажет в последующую единицу времени, если эта единица мала.

Интенсивность отказов изделия есть функция времени от его работы.

В предположении, что безотказность некоторого блока в электронной системе управления автомобиля характеризуется интенсивностью отказов, численно равной рассчитанной, причем эта интенсивность не меняется в течение всего срока его службы, необходимо определить наработку до отказа Т Б такого блока.

Подсистема управления включает в себя k последовательно соединенных электронных блоков (рис.2).

Рис.2 Подсистема управления с последовательно включенными блоками.

Эти блоки имеют одинаковую интенсивность отказов, численно равную рассчитанной. Требуется определить интенсивность отказов подсистемы λ П и среднюю наработку ее до отказа , построить зависимости вероятности безотказной работы одного блока Р Б (t) и подсистемы Р П (t) от наработки и определить вероятности безотказной работы блока Р Б (t) и подсистемы Р П (t) к наработке t= T П.

Интенсивность отказов λ(t) рассчитывается по формуле:

, (5)

Где - статистическая вероятность отказа устройства на интервале или иначе статистическая вероятность попадания на указанный интервал случайной величины Т.

Р(t) – рассчитанная на шаге 1 – вероятность безотказной работы устройства.

Заданное значение 10 3 ч - 6,5

Интервал =

λ(t) = 0,4 / 0,4*3*10 3 ч = 0,00033

Предположим, что интенсивность отказов не меняется в течение всего срока службы объекта, т.е. λ(t) = λ = const, то наработка до отказа распределена по экспоненциальному (показательному) закону.

В этом случае вероятность безотказной работы блока:

(6)

Р Б (t) = exp (-0.00033*6.5*10 3) = exp(-2.1666) = 0.1146

А средняя наработка блока до отказа находится как:

1/0,00033 = 3030,30 ч.

При последовательном соединении k блоков интенсивность отказов образуемой ими подсистемы:

(8)

Т.к.интенсивности отказов всех блоков одинаковы, то интенсивность отказов подсистемы:

λ П = 4*0,00033 = 0,00132 ч.,

а вероятность безотказной работы системы:

(10)

Р П (t) = exp (-0.00132*6.5*10 3) = exp (-8,58) = 0.000188

С учетом (7) и (8) средняя наработка подсистемы до отказа находится как:

(11)

1/0,00132 = 757,58 ч.

Вывод: по мере приближения к предельному состоянию – интенсивность отказов объектов возрастает.

    Расчет вероятности безотказной работы .

Задание: Для наработки t = требуется рассчитать вероятность безотказной работы Рс() системы (рис. 3), состоящей из двух подсистем, одна из которых является резервной.

Рис. 3 Схема системы с резервированием.

Расчет ведется в предположении, что отказы каждой из двух подсистем независимы.

Вероятности безотказной работы каждой системы одинаковы и равны Р П (). Тогда вероятность отказа одной подсистемы:

Q П () = 1 – 0,000188 = 0,99812

Вероятность отказа всей системы определяется из условия, что отказала и первая, и вторая подсистемы, т.е.:

0,99812 2 = 0,99962

Отсюда вероятность безотказной работы системы:

,

Р с () = 1 – 0,98 = 0,0037

Вывод: в данном задании была рассчитана вероятность безотказной работы системы при отказе первой и второй подсистемы. По сравнению с последова-тельной структурой вероятность безотказной работы системы меньше.

Частотой отказов называется отношение числа отказавших образцов аппаратуры в единицу времени к числу образцов, первоначально установленных на испытание при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

Так как число отказавших образцов в интервале времени может зависеть от расположения этого промежутка по оси времени, то частота отказов является функцией времени. Эта характеристика в дальнейшем обозначается α(t).

Согласно определению

где n(t) – число отказавших образцов в интервале времени от до ; N 0 – число образцов аппаратуры, первоначально установленных на испытание; – интервал времени.

Выражение (1.10) является статистическим определением частоты отказов. Этой количественной характеристике надежности легко дать вероятностное определение. Вычислим в выражении (1.10) n (t), т.е. число образцов, отказавших в интервале. Очевидно,

n(t) = -, (1.11)

где N(t) – число образцов, исправно работающих к моменту времени t; N(t + ) – число образцов, исправно работающих к моменту времени t + .

При достаточно большом числе образцов (N 0) справедливы соотношения:

N(t) = N 0 P(t);

N(t+ ) = N 0 P(t+ ). (1.12)

Подставляя выражение (1.11) в выражение (1.10) и учитывая выражение (1.12), получим:

,

а с учетом выражения (1.4) получим:

α(t) = Q / (t) (1.13)

Из выражения (1.13) видно, что частота отказов характеризует плотность распределения времени работы аппаратуры до ее отказа . Численно она равна взятой с обратным знаком производной от вероятности безотказной работы. Выражение (1.13) является вероятностным определением частоты отказов.

Таким образом, между частотой отказов, вероятностью безотказной работы и вероятностью отказов при любом законе распределения времени возникновения отказов существуют однозначные зависимости. Эти зависимости на основании (1.13) и (1.4) имеют вид:

. (1.15)

Частота отказов, являясь плотностью распределения, наиболее полно характеризует такое случайное явление, как время возникновения отказов. Вероятность безотказной работы, математическое ожидание, дисперсия и т.п. являются лишь удобными характеристиками распределения и всегда могут быть получены, если известна частота отказов α(t). В этом ее основное достоинство как характеристики надёжности.

Характеристика α(t) имеет также существенные недостатки. Эти недостатки становятся ясными при детальном рассмотрении выражения (1.10). При определении a(t) из экспериментальных данных фиксируется число отказавших образцов n(t) за промежуток времени при условии, что все отказавшие ранее образцы не восполняются исправными. Это означает, что частоту отказов можно использовать для оценки надежности только такой аппаратуры, которая после возникновения отказа не ремонтируется и в дальнейшем не эксплуатируется (например, аппаратуры разового использования, простейших элементов, не поддающихся ремонту, и т.п.). В противном случае частота отказов характеризует надежность аппаратуры лишь до первого ее отказа.

Оценить с помощью частоты отказов надежность аппаратуры длительного пользования, которая может ремонтироваться, затруднительно. Для этой цели необходимо иметь семейство кривых α(t), полученных: до первого отказа, между первым и вторым, вторым и третьим отказами и т.д. Следует, однако, заметить, что при отсутствии старения аппаратуры указанные частоты отказов будут совпадать. Поэтому α(t) хорошо характеризует надежность аппаратуры также в том случае, когда отказы подчиняются экспоненциальному распределению.

Надежность аппаратуры длительного использования можно характеризовать частотой отказов, полученной при условии замены отказавшей аппаратуры исправной. При этом внешне формула (1.10) не изменяется, однако меняется ее внутреннее содержание.

Частота отказов, полученная при условии замены отказавшей аппаратуры исправной (новой или восстановленной), иногда называется средней частотой отказов и обозначается .

Средней частотой отказов называется отношение числа отказавших образцов в единицу времени к числу испытываемых образцов при условии, что все образцы, вышедшие из строя, заменяются исправными (новыми или восстановленными).

Таким образом,

где n(t) – число отказавших образцов в интервале времени от до , N 0 – число испытываемых образцов (N 0 остается в процессе испытания постоянным, так как все отказавшие образцы заменяются исправными), – интервал времени.

Средняя частота отказов обладает следующими важными свойствами:

1) . Это свойство становится очевидным, если учесть, что ;

2) независимо от вида функции α(t) при средняя частота отказов стремится к некоторой постоянной величине;

3) главное достоинство средней частоты отказов как количественной характеристики надежности состоит в том, что она позволяет довольно полно оценить свойства аппаратуры, работающей в режиме смены элементов. К такой аппаратуре относятся сложные автоматические системы, предназначенные для длительного использования. Подобные системы после возникновения отказов ремонтируются и затем вновь эксплуатируются;

4) средняя частота отказов может быть также использована для оценки надежности сложных систем разового применения в процессе их хранения;

5) она также довольно просто позволяет определить число отказавших в аппаратуре элементов данного типа. Это свойство может быть использовано для вычисления необходимого количества элементов для нормальной эксплуатации аппаратуры в течение времени t. Поэтому является наиболее удобной характеристикой для ремонтных предприятий;

1) знание позволяет также правильно спланировать частоту профилактических мероприятий, структуру ремонтных органов, необходимое количество и номенклатуру запасных элементов.

К недостаткам средней частоты отказов следует отнести сложность определения других характеристик надежности, и в частности основной из них вероятности безотказной работы, при известной .

Сложная система состоит из большого числа элементов. Поэтому представляет интерес найти зависимость средней частоты отказов. Введем понятие суммарной частоты отказов сложной системы.

Суммарной частотой отказов называется число отказов аппаратуры в единицу времени, приходящееся на один ее экземпляр.

1.1 Вероятность безотказной работы

Вероятностью безотказной работы называется вероятность того, что при определенных условиях эксплуатации, в пределах заданной наработки не произойдет ни одного отказа.
Вероятность безотказной работы обозначается как P (l ) , которая определяется по формуле (1.1):

где N 0 - число элементов в начале испытания; r (l ) - число отказов элементов к моменту наработки. Следует отметить, что чем больше величина N 0 , тем с большей точностью можно рассчитать вероятность P (l).
В начале эксплуатации исправного локомотива P (0) = 1, так как при пробеге l = 0 вероятность того, что ни один элемент не откажет, принимает максимальное значение - 1. С ростом пробега l вероятность P (l ) будет уменьшаться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность безотказной работы будет стремиться к нулю P (l →∞) = 0. Таким образом в процессе наработки величина вероятности безотказной работы изменяется в пределах от 1 до 0. Характер изменения вероятности безотказной работы в функции пробега показан на рис. 1.1.

Рис.2.1. График изменения вероятности безотказной работы P(l) в зависимости от наработки

Основными достоинствами использования данного показателя при расчетах является два фактора: во-первых, вероятность безотказной работы охватывает все факторы, влияющие на надежность элементов, позволяя достаточно просто судить о его надежности, т.к. чем больше величина P (l ), тем выше надежность; во-вторых, вероятность безотказной работы может быть использована в расчетах надежности сложных систем, состоящих из более чем одного элемента.

1.2 Вероятность отказа

Вероятностью отказа называют вероятность того, что при определенных условиях эксплуатации, в предела х заданной наработки произойдет хотя бы один отказ.
Вероятность отказа обозначается как Q (l ), которая определяется по формуле (1.2):

В начале эксплуатации исправного локомотива Q (0) = 0, так как при пробеге l = 0 вероятность того, что хотя бы один элемент откажет, принимает минимальное значение - 0. С ростом пробега l вероятность отказа Q (l ) будет увеличиваться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность отказа будет стремиться к единице Q (l →∞ ) = 1. Таким образом в процессе наработки величина вероятности отказа изменяется в пределах от 0 до 1. Характер изменения вероятности отказа в функции пробега показан на рис. 1.2. Вероятность безотказной работы и вероятность отказа являются событиями противоположными и несовместимыми.

Рис.2.2. График изменения вероятности отказа Q(l) в зависимости от наработки

1.3 Частота отказов

Частота отказов - это отношение числа элементов в единицу времени или пробега отнесенного к первоначальному числу испытуемых элементов. Другими словами частота отказов является показателем, характеризующим скорость изменения вероятности отказов и вероятности безотказной работы по мере роста длительности работы.
Частота отказов обозначается как и определяется по формуле (1.3):

где - количество отказавших элементов за промежуток пробега .
Данный показатель позволяет судить по его величине о числе элементов, которые откажут на каком-то промежутке времени или пробега, также по его величине можно рассчитать количество требуемых запасных частей.
Характер изменения частоты отказов в функции пробега показан на рис. 1.3.


Рис. 1.3. График изменения частоты отказов в зависимости от наработки

1.4 Интенсивность отказов

Интенсивность отказов представляет собой условную плотность возникновения отказа объекта, определяемую для рассматриваемого момента времени или наработки при условии, что до этого момента отказ не возник. Иначе интенсивность отказов - это отношение числа отказавших элементов в единицу времени или пробега к числу исправно работающих элементов в данный отрезок времени.
Интенсивность отказов обозначается как и определяется по формуле (1.4):

где

Как правило, интенсивность отказов является неубывающей функцией времени. Интенсивность отказов обычно применяется для оценки склонности к отказам в различные моменты работы объектов.
На рис. 1.4. представлен теоретический характер изменения интенсивности отказов в функции пробега.

Рис. 1.4. График изменения интенсивности отказов в зависимости от наработки

На графике изменения интенсивности отказов, изображенном на рис. 1.4. можно выделить три основных этапа отражающих процесс экс-плуатации элемента или объекта в целом.
Первый этап, который также называется этапом приработки, характеризуется увеличением интенсивности отказов в начальный период эксплуатации. Причиной роста интенсивности отказов на данном этапе являются скрытые дефекты производственного характера.
Второй этап, или период нормальной работы, характеризуется стремлением интенсивности отказов к постоянному значению. В течение этого периода могут возникать случайные отказы, в связи с появлением внезапной концентрации нагрузки, превышающей предел прочности элемента.
Третий этап, так называемый период форсированного старения. Характеризуется возникновением износовых отказов. Дальнейшая эксплуатация элемента без его замены становится экономически не рациональной.

1.5 Средняя наработка до отказа

Средняя наработка до отказа - это средний пробег безотказной работы элемента до отказа.
Средняя наработка до отказа обозначается как L 1 и определяется по формуле (1.5):

где l i - наработка до отказа элемента; r i - число отказов.
Средняя наработка до отказа может быть использована для предварительного определения сроков ремонта или замены элемента.

1.6 Среднее значение параметра потока отказов

Среднее значение параметра потока отказов характеризует среднюю плотность вероятности возникновения отказа объекта, определяемая для рассматриваемого момента времени.
Среднее значение параметра потока отказов обозначается как W ср и определяется по формуле (1.6):

1.7 Пример расчета показателей безотказности

Исходные данные.
В течение пробега от 0 до 600 тыс. км., в локомотивном депо произведен сбор информации по отказам ТЭД. При этом количество исправных ТЭД в начале периода эксплуатации составляло N0 = 180 шт. Суммарное количество отказавших ТЭД за анализируемый период составило ∑r(600000) = 60. Интервал пробега принять равным 100 тыс. км. При этом количество отказавших ТЭД по каждому участку составило: 2, 12, 16, 10, 14, 6.

Требуется.
Необходимо рассчитать показатели безотказности и построить их зависимости изменения во времени.

Сначала необходимо заполнить таблицу исходных данных так, как это показано в табл. 1.1.

Таблица 1.1.

Исходные данные к расчету
, тыс. км 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60

Первоначально по уравнению (1.1) определим для каждого участка пробега величину вероятности безотказной работы. Так, для участка от 0 до 100 и от 100 до 200 тыс. км. пробега вероятность безотказной работы составит:

Произведем расчет частоты отказов по уравнению (1.3).

Тогда интенсивность отказов на участке 0-100 тыс.км. будет равна:

Аналогичным образом определим величину интенсивности отказов для интервала 100-200 тыс. км.

По уравнениям (1.5 и 1.6) определим среднюю наработку до отказа и среднее значение параметра потока отказов.

Систематизируем полученные результаты расчета и представим их в виде таблицы (табл. 1.2.).

Таблица 1.2.

Результаты расчета показателей безотказности
, тыс.км. 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60
P(l) 0,989 0,922 0,833 0,778 0,7 0,667
Q(l) 0,011 0,078 0,167 0,222 0,3 0,333
10 -7 , 1/км 1,111 6,667 8,889 5,556 7,778 3,333
10 -7 , 1/км 1,117 6,977 10,127 6,897 10,526 4,878

Приведем характер изменения вероятности безотказной работы ТЭД в зависимости от пробега (рис. 1.5.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности безотказной работы примет максимальное значение - 1.

Рис. 1.5. График изменения вероятности безотказной работы в зависимости от наработки

Приведем характер изменения вероятности отказа ТЭД в зависимости от пробега (рис. 1.6.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности отказа примет минимальное значение - 0.

Рис. 1.6. График изменения вероятности отказа в зависимости от наработки

Приведем характер изменения частоты отказов ТЭД в зависимости от пробега (рис. 1.7.).

Рис. 1.7. График изменения частоты отказов в зависимости от наработки

На рис. 1.8. представлена зависимость изменения интенсивности отказов от наработки.

Рис. 1.8. График изменения интенсивности отказов в зависимости от наработки

2.1 Экспоненциальный закон распределения случайных величин

Экспоненциальный закон достаточно точно описывает надежность узлов при внезапных отказах, имеющих случайный характер. Попытки применить его для других типов и случаев отказов, особенно постепенных, вызванных износом и изменением физико-химических свойств элементов показали его недостаточную приемлемость.

Исходные данные.
В результате испытания десяти топливных насосов высокого давления получены наработки их до отказа: 400, 440, 500, 600, 670, 700, 800, 1200, 1600, 1800 ч. Предполагая, что наработка до отказа топливных насосов подчиняется экспоненциальному закону распределения.

Требуется.
Оценить величину интенсивности отказов, а также рассчитать вероятность безотказной работы за первые 500 ч. и вероятность отказа в промежутке времени между 800 и 900 ч. работы дизеля.

Во-первых, определим величину средней наработки топливных насосов до отказа по уравнению:

Затем рассчитываем величину интенсивности отказов:

Величина вероятности безотказной работы топливных насосов при наработке 500 ч составит:

Вероятность отказа в промежутке между 800 и 900 ч. работы насосов составит:

2.2 Закон распределения Вэйбулла-Гнеденко

Закон распределения Вейбулла-Гнеденко получил широкое распространение и используется применительно к системам, состоящим из рядов элементов, соединенных последовательно с точки зрения обеспечения безотказности системы. Например, системы, обслуживающие дизель-генераторную установку: смазки, охлаждения, питания топливом, воздухом и т.д.

Исходные данные.
Время простоя тепловозов в неплановых ремонтах по вине вспомогательного оборудования подчиняется закону распределения Вейбулла-Гнеденко с параметрами b=2 и a=46.

Требуется.
Необходимо определить вероятность выхода тепловозов из неплановых ремонтов после 24 ч. простоя и время простоя, в течение которого работоспособность будет восстановлена с вероятностью 0,95.

Найдем вероятность восстановления работоспособности локомотива после простоя его в депо в течение суток по уравнению:

Для определения времени восстановления работоспособности локомотива с заданной величиной доверительной вероятности также используем выражение:

2.3 Закон распределения Рэлея

Закон распределения Рэлея используется в основном для анализа работы элементов, имеющих ярко выраженный эффект старения (элементы электрооборудования, различного рода уплотнения, шайбы, прокладки, изготовленные из резиновых или синтетических материалов).

Исходные данные.
Известно, что наработки контакторов до отказа по параметрам старения изоляции катушек можно описать функцией распределения Рэлея с параметром S = 260 тыс.км.

Требуется.
Для величины наработки 120 тыс.км. необходимо определить вероятность безотказной работы, интенсивность отказов и среднюю наработку до первого отказа катушки электромагнитного контактора.

3.1 Основное соединение элементов

Система, состоящая из нескольких независимых элементов, связанных функционально таким образом, что отказ любого из них вызывает отказ системы, отображается расчетной структурной схемой безотказной работы с последовательно соединенными событиями безотказной работы элементов.

Исходные данные.
Нерезервированная система состоит из 5 элементов. Интенсивности их отказов соответственно равны 0,00007; 0,00005; 0,00004; 0,00006; 0,00004 ч-1

Требуется.
Необходимо определить показатели надежности системы: интенсивность отказов, среднее время наработки до отказа, вероятность безотказной работы, частота отказов. Показатели надежности P(l) и a(l) получить в интервале от 0 до 1000 часов с шагом в 100 часов.

Вычислим интенсивность отказа и среднюю наработку до отказа по следующим уравнениям:

Значения вероятности безотказной работы и частоты отказов получим, используя уравнения приведенные к виду:

Результаты расчета P(l) и a(l) на интервале от 0 до 1000 часов работы представим в виде табл. 3.1.

Таблица 3.1.

Результаты расчета вероятности безотказной работы и частоты отказов системы на интервале времени от 0 до 1000 ч.
l , час P(l) a(l) , час -1
0 1 0,00026
100 0,974355 0,000253
200 0,949329 0,000247
300 0,924964 0,00024
400 0,901225 0,000234
500 0,878095 0,000228
600 0,855559 0,000222
700 0,833601 0,000217
800 0,812207 0,000211
900 0,791362 0,000206
1000 0,771052 0,0002

Графическая иллюстрация P(l) и a(l) на участке до средней наработки до отказа представлена на рис. 3.1, 3.2.

Рис. 3.1. Вероятность безотказной работы системы.

Рис. 3.2. Частота отказов системы.

3.2 Резервное соединение элементов

Исходные данные.
На рис. 3.3 и 3.4 показаны две структурные схемы соединения элементов: общего (рис. 3.3) и поэлементного резервирования (рис. 3.4). Вероятности безотказной работы элементов соответственно равны P1(l) = P ’1(l) = 0,95; P2(l) = P’2(l) = 0,9; P3(l) = P ’3(l) = 0,85.

Рис. 3.3. Схема системы с общим резервированием.

Рис. 3.4. Схема системы с поэлементным резервированием.

Вероятность безотказной работы блока из трех элементов без резервирования рассчитаем по выражению:

Вероятность безотказной работы той же системы при общем резервировании (рис. 3.3) составит:

Вероятности безотказной работы каждого из трех блоков при поэлементном резервировании (рис. 3.4) будут равны:

Вероятность безотказной работы системы при поэлементном резервировании составит:

Таким образом, поэлементное резервирование дает более существенное увеличение надежности (вероятность безотказной работы возросла с 0,925 до 0,965, т.е. на 4%).

Исходные данные.
На рис. 3.5 представлена система с комбинированным соединением элементов. При этом вероятности безотказной работы элементов имеют следующие значения: P1=0,8; Р2=0,9; Р3=0,95; Р4=0,97.

Требуется.
Необходимо определить надежность системы. Также необходимо определить надежность этой же системы при условии, что резервные элементы отсутствуют.

Рис.3.5. Схема системы при комбинированном функционировании элементов.

Для расчета в исходной системе необходимо выделить основные блоки. В представленной системе их три (рис. 3.6). Далее рассчитаем надежность каждого блока в отдельности, а затем найдем надежность всей системы.

Рис. 3.6. Сблокированная схема.

Надежность системы без резервирования составит:

Таким образом, система без резервирования является на 28% менее надежной, чем система с резервированием.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
NexxDigital - компьютеры и операционные системы